Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
ĐKXĐ: \(x\ne-2;-3;-4\)
Ta có: \(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}=1\)
<=> \(\frac{x\left(x+2\right)}{x+2}+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}\)=1
<=> \(\frac{x^2+2x}{x+2}+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}=1\)
<=> \(\frac{x^2+3x+2}{x+2}=1\)<=>\(\frac{\left(x+1\right)\left(x+2\right)}{x+2}=1\)<=>x+1=1
<=>x=0
Vậy x=0
\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)
=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0
=>x+2022=0
=> x=-2022
a: 5-3x=6x+7
=>-3x-6x=7-5
=>-9x=2
=>\(x=-\dfrac{2}{9}\)
b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)
=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)
=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)
=>3x-2+3x+14=48
=>6x+12=48
=>6x=36
=>\(x=\dfrac{36}{6}=6\)
c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
=>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)
1 ) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
Đặt \(t=x^2+x\), ta được :
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2-2t+6t-12=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)
+ ) Khi \(t=2,\) thì :
\(x^2+x=2\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
+ ) Khi \(t=-6,\) thì :
\(x^2+x=-6\)
\(\Leftrightarrow x^2+x+6=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\) ( vô lí )
Vậy .........
2 ) \(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-18x^3+13x^3-39x^2+x^2-3x-2x+6=0\)
\(\Leftrightarrow6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3+13x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+3x-2x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left[3x\left(2x+1\right)-\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(3x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(ĐKXĐ:\)\(x\ne-2;\)\(x\ne-3;\)\(x\ne-4\)
\(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}=1\)
\(\Leftrightarrow\)\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\)\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}=1\)
\(\Leftrightarrow\)\(\frac{x\left(x+2\right)+x+1+1}{x+2}=1\)
\(\Leftrightarrow\)\(\frac{x^2+3x+2}{x+2}=1\)
\(\Leftrightarrow\)\(x^2+3x+2=x+2\)
\(\Leftrightarrow\)\(x\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-2\left(L\right)\end{cases}}\)
Vậy pt có nghiệm \(x=0\)