Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
\(VT=\sqrt{\left(x+2\right)^2+4}+\sqrt{\left(3-x\right)^2+1}\)
\(VT\ge\sqrt{\left(x+2+3-x\right)^2+\left(2+1\right)^2}=\sqrt{34}\)
Pt có nghiệm khi và chỉ khi \(m\ge\sqrt{34}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
\(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\\ \Leftrightarrow2\left(\sqrt{6x-5}-5\right)+\sqrt{x^2-6x+14}-3=x^2-4x-5\)
(đk x>= 5/6)
\(\Leftrightarrow\frac{2\left(6x-5-25\right)}{\sqrt{6x-5}+5}+\frac{x^2-6x+5}{\sqrt{x^2-6x+14}+3}=\left(x+1\right)\left(x-5\right)\)
\(\Leftrightarrow\frac{12\left(x-5\right)}{\sqrt{6x-5}+5}+\frac{\left(x-1\right)\left(x-5\right)}{\sqrt{x^2-6x+14}+3}-\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{12}{\sqrt{6x-5}+5}+\frac{x-1}{\sqrt{x^2-6x+14+3}}-x-1\right)=0\)
suy ra x = 5 ( dễ dàng chứng minh được cái ngoặc còn lại luôn dương với mọi x lớn hơn bằng 5/6 )
vậy x = 5 là nghiệm của phương trình
mình làm còn có nghiệm = 1 nữa bạn ạ