Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc247.net/hoi-dap/toan-8/giai-phuong-trinh-2x-8x-1-2-4x-1-9-faq441870.html
\(\Rightarrow2x\cdot\left(64x^2-16x+1\right)\cdot\left(4x-1\right)=9\)
\(\Rightarrow\left(64x^2-16x+1\right)\cdot\left(8x^2-2x\right)=9\)
Nhân cả hai vế của phương trình với 8 ta được:
\(\left(64x^2-16x+1\right)\cdot\left(64x^2-16x\right)=72\)
Đặt \(a=64x^2-16x\left(a\ge1\right)\) (1)
\(\Rightarrow\left(a+1\right)\cdot a=72\)
\(\Rightarrow a^2+a-72=0\)
\(\Rightarrow\left(a-8\right)\cdot\left(a+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=8\left(tmđk\right)\\a=-9\left(loại\right)\end{matrix}\right.\)
Thay vào (1) ta đc:
\(64x^2-16x=8\Rightarrow64x^2-16x-8=0\)
\(\Rightarrow\left(2x-1\right)\left(4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
bài 1 :
\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=\frac{1}{2}\)
bài 2 :
\(\Leftrightarrow\left(2x+1\right)\left(3x+2\right)\left(12x+7\right)^2-3=\left(3x+1\right)\left(6x+5\right)\left(48x^2+56x+19\right)\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow6x+5=0\)
\(\Rightarrow6x=-5\)
Áp dụng Delta ta có :
\(\Rightarrow48x^2+56x+19=0\)
\(\Rightarrow56^2-4\left(48.19\right)=-512\)
=>D<0 ko có nghiệm thực ( ko có hình tam giác nên thay tạm )
\(\Rightarrow x=-\frac{5}{6}\) hoặc \(x=-\frac{1}{3}\)
tôi nhớ có 1 lần tôi làm mà ông ko tik nhé
a/ 2x(8x - 1)2(4x - 1) = 9
=> (64x2 - 16x + 1) (8x2 - 2x) = 9
- Nhân 2 vế cho 8 ta đc:
(64x2 - 16x + 1) (64x2 - 16x) = 72
- Đặt a = 64x2 - 16x ta đc:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a - 8)(a + 9) = 0
=> a = 8 hoặc a = -9
- Với a = 8 => 64x2 - 16x = 8 => 64x2 - 16x - 8 = 0 => (2x - 1)(4x + 1) = 0 => x = 1/2 hoặc x = -1/4
- Với a = -9 => 64x2 - 16x = -9 => 64x2 - 16x + 9 = 0 , mà 64x2 - 16x + 9 > 0 => pt vô nghiệm
Vậy x = 1/2 , x = -1/4
2x(8x - 1)2 (4x - 1) = 9
=> (64x2 - 16x + 1)(8x2 - 2x) = 9
Nhân vào ta được:
512x4 - 256x3 + 40x2 - 2x - 9 = 0
=> (512x4 - 256x3) + (40x2 - 20x) + (18x - 9) = 0
=> 256x3 (2x - 1) + 20x(2x - 1) + 9(2x - 1) = 0
=> (2x - 1)(256x3 + 20x + 9) = 0
=> 2x - 1 = 0 hoặc 256x3 + 20x + 9 = 0
+) Với 2x - 1 = 0 => x = 1/2
+) Với 256x3 + 20x + 9 = 0
=> (256x3 + 64x2 ) - (64x2 + 16x) + (36x + 9) = 0
=> 64x2 (4x + 1) - 16x(4x + 1) - 9(4x + 1) = 0
=> (4x + 1)(64x2 - 16x - 9) = 0
=> 4x + 1 = 0 hoặc 64x2 - 16x - 9 = 0
Mà 64x2 - 16x - 9 > 0 => 4x + 1 = 0 => x = -1/4
Vậy x = 1/2 , x = -1/4
2x(8x-1)^2(4x-1)=9<=>(8x-1)^2(8x^2-2x)=9
=>8(8x-1)^2(8x^2-2x)=8.9=>(8x-1)^2(64x^2-16x)=72=>(64x^2-16x+1)(64x^2-16x)=72
Đặt 64x^2-16x=a , tự giải tiếp
<=> (8x2 - 2x).(64x2 -16x +1) =9
=> 512x4 -128x3 +8x2 - 128x3 +32x2 -2x =9
=> 512x4 -256x3 +40x2 -2x - 9 = 0
=> ( 512x4 -256x3) + (40x2 - 20x) + (18x - 9) = 0
=> 256x3.(2x - 1) + 20x.(2x - 1) + 9.(2x- 1) = 0
=> (2x - 1).(256x3 + 20x + 9) = 0 => (2x - 1).(256x3 + 64x2 - 64x2 - 16x + 36x + 9) = 0
=> (2x - 1).[(256x3 + 64x2 ) - (64x2 + 16x) + (36x + 9)] = 0
=> (2x - 1).[64x2 (4x + 1) - 16x(4x + 1) + 9(4x + 1)] = 0 => (2x - 1).(4x+1)(64x2- 16x + 9) = 0
=> 2x -1 = 0 hoặc 4x + 1 = 0 hoặc 64x2- 16x + 9 = 0
Vì 64x2- 16x + 9 = (8x - 1)2 + 8 > 0 nên 64x2- 16x + 9 = 0 vô nghiệm
Vậy x = 1/2 hoặc -1/4
Cách này ngắn hơn
2x(8x-1)2(4x-1)=9<=>8x(8x-1)2(8x-2)=72(nhân cả hai vế với 8).Đặt 8x-1=t=>(t+1)t2(t-1)=72
=>t2(t2-1)=72.Vì t2 và t2-1 là hai stn liên tiếp=>t2=9=>x=(0,5;-0,25)