Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)
\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)
\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)
\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)
=> không có giá trị x,y,z thỏa mãn đề
\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)
\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)
\(ĐK:x\ge2,y\ge-2003,z\ge2004\)
Pt đã cho tương đương :
\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)
(x+2004-2004+4)/2000+(x-2004+2004+3)/2001=(x-2004+2004+2)/2002+(x-2004+2004+1)/2003
hay (x+2004)/2000-1+(x+2004)/2001-1=(x+2004)/2002-1+(x+2004)/2003-1
Hay (x+2004)(1/2000+1/2001)=(x+2004)(1/2002+1/2003)
Hay (x+2004)(1/2000+1/2001-1/2002-1/2003)=0
hay x+2004=0
Hay x=-2004
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2001}+\sqrt{x-2002}-\sqrt{x-2003}\right)=0\)
=>x-1=0
=>x=1
\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)
=\(\frac{2002\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{2003\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)
=\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)
>\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}+\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2003}.\sqrt{2002}}\)
>\(\frac{\sqrt{2002}.\sqrt{2003}.\left(\sqrt{2002}+\sqrt{2003}\right)}{\sqrt{2003}.\sqrt{2002}}\)
>\(\sqrt{2002}+\sqrt{2003}\)
=>\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)>\(\sqrt{2002}+\sqrt{2003}\)(dpcm)