Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-4x+4x-5\ge x^2+6\Leftrightarrow-5\ge6\)
vô lí bpt vô nghiệm
b, \(9x^2-6x+1-9x^2+9< 5x-2\Leftrightarrow-6x+10< 5x-2\)
\(\Leftrightarrow-11x< -12\Leftrightarrow x>\dfrac{12}{11}\)
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
\(\Leftrightarrow\left(144x^2+168x+49\right)\left(6x^2+7x+2\right)=3\)
Đặt \(6x^2+7x+2=t\Rightarrow6x^2+7x=t-2\)
\(\Rightarrow144x^2+168x+49=24\left(6x^2+7x\right)+49=24\left(t-2\right)+49=24t+1\)
Phương trình trở thành:
\(\left(24t+1\right)t=3\Leftrightarrow24t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1}{3}\\t=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+2=\dfrac{1}{3}\\6x^2+7x+2=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+\dfrac{5}{3}=0\\6x^2+7x+\dfrac{19}{8}=0\end{matrix}\right.\) (bấm máy)