Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow9y^2-12xy+4x^2+x^2+8-48y+24x+72=0\)
<=> \(\left(3y-2x\right)^2-16\left(3y-2x\right)+64+x^2-8x+16=0\)
<=> \(\left(3y-2x-8\right)^2+\left(x-4\right)^2=0\)
Để pt xảy ra khi và chỉ khi
x - 4 = 0
3y - 2x - 8 = 0
=> x = 4 và y = 16/3 ( loại )
Vậy không có gt x ; y nguyên tm
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
làm tiếp bài của bạn Pham Trung Thanh
Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)
\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)
Vậy pt vô nghiệm nguyên