K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

\(x^4-2x^3+3x^2-2x+1=0\)

Chia cả hai vé cho \(x^2\)

\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt x+1/x = a, ta có:

\(a^2-2a+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)

Do đó phương trình vô nghiệm

Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)

21 tháng 5 2019

x2 + ( x + 1 )2 = y4 + ( y + 1 )4

\(\Leftrightarrow\)2x2 + 2x + 1 = 2y4 + 4y3 + 6y2 + 4y + 1

\(\Leftrightarrow\)2x2 + 2x + 2 = 2y4 + 4y3 + 6y2 + 4y + 2

\(\Leftrightarrow\)2 . ( x2 + x + 1 ) = 2 ( y4 + 2y3 + 3y2 + 2y + 1 )

\(\Leftrightarrow\) x2 + x + 1 = ( y2 + y + 1 )2

\(\Leftrightarrow\)4 . ( x2 + x + 1 ) = 4 . ( y2 + y + 1 )2

\(\Leftrightarrow\) ( 2x + 1 )2 + 3 = [ 2 . ( y2 + y + 1 ) ]2

\(\Leftrightarrow\) [ 2 . ( y2 + y + 1 ) ]2 - ( 2x + 1 )2 = 3

\(\Leftrightarrow\)( 2y2 + 2y - 2x + 1 ) ( 2y2 + 2y + 2x + 3 ) = 3

sau đó lập bảng mà làm nhé

6 tháng 5 2022

a) 3x + 18 = 0

<=>  3*(x+6)=0

<=> x+6=0

<=> x=-6

Vậy S={-6}

6x-7=3x+2

<=> 6x - 3x= 2+7

<=> 3x=9

<=> x=3 

Vậy S={ 3}

c) mk ko hỉu rõ đề

24 tháng 2 2019

\(x^2+6x+6+\left(\frac{x+3}{x+2}\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)

đặt x+3=y => x+4=y+1

lại có \(y^2+\frac{y^2}{\left(y+1\right)^2}-3=0\)

Tự giải tiếp đi

24 tháng 2 2019

Bùi Đức Anh phần sau mới khó thì lại kêu tự giải 

24 tháng 4 2020

\(\Leftrightarrow x^2-3x+\frac{1}{2}=0.\)

\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+\frac{1}{2}=0.\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{7}{4}.\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{7}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{7}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}+3}{2}\\x=\frac{-\sqrt{7}+3}{2}\end{cases}}}\)

Học tốt