Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ge-\frac{3}{2}\)
Nhân liên hợp ta có
\(\left(x+1\right)^2\left(x+2+\sqrt{2x+3}\right)=\left(x+5\right)\left[\left(x+2\right)^2-2x-3\right]\)
<=> \(\left(x+1\right)^2\left(x+2+\sqrt{2x+3}\right)=\left(x+5\right)\left(x+1\right)^2\)
<=> \(\left[{}\begin{matrix}x=-1\\x+2+\sqrt{2x+3}=x+5\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\\sqrt{2x+3}=3\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)(tm ĐK)
vậy \(S=\left\{-1;3\right\}\)
a/ Chia làm 2 trường hợp :
+) x - 1 = 2x => -x = 1 => x = -1
+) x - 1 = -2x => 3x = 1 => x = 1/3
Vậy x = -1 ; x = 1/3
b/ \(\Rightarrow x=x-5+\left(x+5\right)\left(1-x\right)\)
\(\Rightarrow x=x-5+x-x^2+5-5x\)
\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow x=0\) hoặc \(x+4=0\Rightarrow x=-4\)
Vậy x = 0 ; x = -4
3.(2X+3)=-X.(X-2)-1 <=>6X+9=-\(x^2\)+2X-1 <=> \(x^2\) +4x+10=0 (\(\Delta\)' =4-10=-6 nhỏ hơn 0)
pt vô nghiệm
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
\(\sqrt{x^2+2x+5}=-x^2-2x+1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)
Ta thấy :
\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)
\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)
\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1
Vậy Phương trình có nghiệm x = -1 .
\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)
Ta thấy :
\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)
\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)
\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)
\(\Rightarrow VT\ge4\) ; \(VP\le4\)
\(\Rightarrow VT=VP=4\)
Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3
Vậy phương trình có nghiệm x = 3 .
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)
\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)
\(\Leftrightarrow4x-2< 3x+18\)
\(\Leftrightarrow4x-3x< 2+18\)
\(\Leftrightarrow x< 20\)
\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)
\(\Leftrightarrow5x-11>4x+4\)
\(\Leftrightarrow5x-4x>11+4\)
\(\Leftrightarrow x>15\)
\(2x\sqrt{x-1}=5\left(x-1\right)\)
đkxđ \(x-1\ge0\Leftrightarrow x\ge1\)
pt đã cho \(\Leftrightarrow5\left(x-1\right)-2x\sqrt{x-1}=0\)\(\Leftrightarrow\sqrt{x-1}\left(5\sqrt{x-1}-2x\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=0\\5\sqrt{x-1}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\5\sqrt{x-1}=2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(nhận\right)\\25\left(x-1\right)=4x^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\4x^2-25x+25=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\), ta được \(4x^2-25x+25=0\)\(\Leftrightarrow4x^2-20x-5x+25=0\)\(\Leftrightarrow4x\left(x-5\right)-5\left(x-5\right)=0\)\(\Leftrightarrow\left(x-5\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\4x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{4}\end{cases}}\)(nhận)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;\frac{5}{4};5\right\}\)