K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

a) \(2x^2+20x+52=0\Rightarrow x^2+10x+26=0\Rightarrow\left(x+5\right)^2+1=0\)

\(\Rightarrow\) vô nghiệm

b) ĐK: \(x\ne1;-1\)

\(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{17}{x-1}+\dfrac{8}{x-1}=0\)

\(\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{9}{x-1}=0\Rightarrow\dfrac{2x-19-45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow-43x-64=0\Rightarrow x=-\dfrac{64}{43}\)

9 tháng 7 2021

a)  Ta có: \(\Delta'=100-104=-4< 0\)

Vậy phương trình vô nghiệm.

b) ĐKXĐ: \(x\ne1;x\ne-1\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x^2-1\right)}=\dfrac{17}{x-1}-\dfrac{8}{x-1}\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{9}{x-1}\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow2x-19=45x+45\)

\(\Leftrightarrow43x=-64\)

\(\Leftrightarrow x=-\dfrac{64}{43}\)(TM)

Vậy phương trình có nghiệm là: \(x=-\dfrac{64}{43}\)

a: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)

=>-2x^2+x+1-2x^2+2x=0

=>-4x^2+3x+1=0

=>4x^2-3x-1=0

=>4x^2-4x+x-1=0

=>(x-1)(4x+1)=0

=>x=1(loại) hoặc x=-1/4(nhận)

b: \(\Leftrightarrow\dfrac{440}{x-2}-\dfrac{440}{x}=1\)

=>x(x-2)=440x-440x+880

=>x^2-2x-880=0

=>\(x=1\pm\sqrt{881}\)

c: \(\Leftrightarrow\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)

=>x^2+5x=6(2x+5)

=>x^2+5x-12x-30=0

=>x^2-7x-30=0

=>(x-10)(x+3)=0

=>x=10 hoặc x=-3

d: =>(x-1)(x+1)-x=2x-1

=>x^2-1-x=2x-1

=>x^2-x-2x=0

=>x(x-3)=0

=>x=0(loại) hoặc x=3(nhận)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

a:

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

=>|x-3|=3

=>x-3=3 hoặc x-3=-3

=>x=0 hoặc x=6

b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

=>\(\left|\sqrt{x-1}+1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)

=>x-1=1

=>x=2

c:

ĐKXĐ: x>4/5

PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

d: ĐKXĐ: x-4>=0 và x+1>=0

=>x>=4

PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)

=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)

=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)

=>\(\sqrt{x^2-3x-4}=14-x\)

=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196

=>x<=14 và -3x-4=-28x+196

=>x<=14 và 25x=200

=>x=8(nhận)

16 tháng 8 2023

a) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3 \)

TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=3+3\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)

Pt trở thành:

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=-3+3\)

\(\Leftrightarrow x=0\left(tm\right)\)

b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))

\(\Leftrightarrow x+2\sqrt{x-1}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4-x\)

\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)

\(\Leftrightarrow4x-4=16-8x+x^2\)

\(\Leftrightarrow x^2-12x+20=0\)

\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)

\(\Leftrightarrow5x-4=4x+8\)

\(\Leftrightarrow x=12\left(tm\right)\)

NV
13 tháng 12 2020

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
13 tháng 12 2020

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

6 tháng 10 2021

a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5a+b=5\\15a=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{5}\\b=-3\end{matrix}\right.\)

d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{6}{x}=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)