Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-1\le x\le\frac{5}{3}\)
\(\Leftrightarrow6-2x+2\sqrt{-3x^2+2x+5}=3x^2-4x+4\)
\(\Leftrightarrow-3x^2+2x+5+2\sqrt{-3x^2+2x+5}-3=0\)
Đặt \(\sqrt{-3x^2+2x+5}=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-3x^2+2x+5}=1\)
\(\Leftrightarrow-3x^2+2x+4=0\)
\(\Leftrightarrow...\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
Đk: \(x\ge6\)
pt\(\Leftrightarrow\sqrt{5x^2+4x}=5\sqrt{x}+\sqrt{x^2-3x-18}\)
\(\Leftrightarrow5x^2+4x=25x+x^2-3x-18+10\sqrt{x\left(x^2-3x-18\right)}\)
\(\Leftrightarrow2x^2-9x+9=5\sqrt{x^3-3x^2-18x}\)
\(\Leftrightarrow4x^4+81x^2+81-36x^3-162x+36x^2=25\left(x^3-3x^2-18x\right)\)
\(\Leftrightarrow4x^4-61x^3+192x^2+288x+81=0\)
\(\Leftrightarrow\left(x-9\right)\left(4x+3\right)\left(x^2-7x-3\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)\left(x-\dfrac{7-\sqrt{61}}{2}\right)=0\)
mà x \(\ge6\) \(\Rightarrow\left\{{}\begin{matrix}4x+3>0\\x-\dfrac{7-\sqrt{61}}{2}>0\end{matrix}\right.\)
\(\Rightarrow\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{7+\sqrt{61}}{2}\end{matrix}\right.\)
Vậy.....
Sau khi bình phương lần thứ nhất, đến:
\(2x^2-9x+9=5\sqrt{x^3-3x^2-18}\)
Thay vì bình phương tiếp lên bậc 4 rất cồng kềnh, em có thể đặt ẩn phụ:
\(\Leftrightarrow2x^2-9x+9=5\sqrt{\left(x+3\right)\left(x^2-6x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-6x}=a\\\sqrt{x+3}=b\end{matrix}\right.\) ta được:
\(2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
a) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)
\(TH_1:x\le\dfrac{1}{2}\)
\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)
\(TH_2:x\ge\dfrac{1}{2}\)
\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{-2;3\right\}\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)
\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)