K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK : \(\left|x\right|\ge3\)

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}+\sqrt{x-3}=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\) ( Thỏa mãn )

30 tháng 10 2017

\(\sqrt{x^2+2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+1\right|+\left|x-3\right|\)

\(=x+1+x-3\)

\(=2x-2\)

\(=2\left(x-1\right)\)

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

11 tháng 9 2016

b sai \(\sqrt{x^2+6x+9}\) ms đúng

11 tháng 9 2016

Giai đi nha

12 tháng 10 2021

đội tuyển toán tự làm đi m 

12 tháng 10 2021

:)) chụp đi ku

a:

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

=>|x-3|=3

=>x-3=3 hoặc x-3=-3

=>x=0 hoặc x=6

b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

=>\(\left|\sqrt{x-1}+1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)

=>x-1=1

=>x=2

c:

ĐKXĐ: x>4/5

PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

d: ĐKXĐ: x-4>=0 và x+1>=0

=>x>=4

PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)

=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)

=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)

=>\(\sqrt{x^2-3x-4}=14-x\)

=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196

=>x<=14 và -3x-4=-28x+196

=>x<=14 và 25x=200

=>x=8(nhận)

16 tháng 8 2023

a) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3 \)

TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=3+3\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)

Pt trở thành:

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=-3+3\)

\(\Leftrightarrow x=0\left(tm\right)\)

b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))

\(\Leftrightarrow x+2\sqrt{x-1}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4-x\)

\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)

\(\Leftrightarrow4x-4=16-8x+x^2\)

\(\Leftrightarrow x^2-12x+20=0\)

\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)

\(\Leftrightarrow5x-4=4x+8\)

\(\Leftrightarrow x=12\left(tm\right)\)

8 tháng 8 2019

\(\sqrt{x^2-6x+9}-\sqrt{x^2-2x+1}=\sqrt{x^2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=x\)

\(\Rightarrow x-3-x+1-x=0\)

\(\Rightarrow-x=2\Rightarrow x=-2\)

Vậy......

8 tháng 8 2019

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|x-3\right|-\left|x-1\right|-\left|x\right|=0\)

Xét \(x< 0\Leftrightarrow3-x+x-1+x=0\)

               \(\Leftrightarrow x=-2\)(tm)

Xét \(0\le x< 1\)\(\Leftrightarrow3-x+x-1-x=0\)

                         \(\Leftrightarrow x=1\left(l\right)\)

Xét \(1< x\le3\Leftrightarrow3-x-x+1-x=0\)

                      \(\Leftrightarrow4=3x\Leftrightarrow x=\frac{4}{3}\)(tm)

Xét \(x\ge3\Leftrightarrow x-3-x+1-x=0\)

              \(\Leftrightarrow x=-1\left(l\right)\)

21 tháng 11 2019

a, Ta có: \(\Delta'=1-m+3=4-m\)

Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)

b, ĐXXĐ: \(x\le\frac{9}{4}\)

\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)

\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)

Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)

NV
15 tháng 4 2019

Đặt \(\sqrt{6x-9}=a\ge0\Rightarrow x=\frac{a^2+9}{6}\) pt trở thành:

\(\sqrt{\frac{a^2+9}{6}+a}+\sqrt{\frac{a^2+9}{6}-4a}=\sqrt{6}\)

\(\Leftrightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow a+3+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow\sqrt{a^2-24a+9}=3-a\) (\(a\le3\))

\(\Leftrightarrow a^2-24a+9=a^2-6a+9\)

\(\Rightarrow a=0\Rightarrow\sqrt{6x-9}=0\Rightarrow x=\frac{3}{2}\)

Do ban đầu ko đặt ĐKXĐ nên phải thay nghiệm vào để thử, thấy đúng, vậy pt có nghiệm duy nhất \(x=\frac{3}{2}\)

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)