Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
\(x^2\left(x^2+2\right)=4-x\sqrt{2x^2+4}\)
Đặt \(t=x\sqrt{2x^2+4}\)
Pttt: \(\dfrac{t^2}{2}=4-t\)
\(\Leftrightarrow t^2+2t-8=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)
TH1: \(t=2\Rightarrow x\sqrt{2x^2+4}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2\left(2x^2+4\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^4+2x^2-2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x^2=-1+\sqrt{3}\end{matrix}\right.\)(do \(x^2\ge0\)) \(\Rightarrow x=\sqrt{-1+\sqrt{3}}\)
TH2: \(t=-4\Rightarrow x\sqrt{2x^2+4}=-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2\left(2x^2+4\right)=16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^4+2x^2-8=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x^2=2\end{matrix}\right.\)(do \(x^2\ge0\))\(\Rightarrow x=-\sqrt{2}\)
Vậy...
\(ĐK:x\in R\)
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)
Đặt \(x^2+x+1=a;a\ge0\)
\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)
(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)
\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)
\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)
\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)
Vậy \(S=\left\{0;-1\right\}\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
\(PT\Leftrightarrow\left(x^2+4\right)\sqrt{2x+4}+\left(x^2+4\right)=4x^2+6x\\ \Leftrightarrow\dfrac{\left(x^2+4\right)\left(2x+3\right)}{\sqrt{2x+4}-1}-2x\left(2x+3\right)=0\\ \Leftrightarrow\left(2x+3\right)\left(\dfrac{x^2+4}{\sqrt{2x+4}-1}-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\\dfrac{x^2+4}{\sqrt{2x+4}-1}=2x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x\sqrt{2x+4}-2x=x^2+4\\ \Leftrightarrow2x\sqrt{2x+4}=x^2+2x+4\\ \Leftrightarrow8x^3+16x^2=x^4+4x^3+12x^2+16x+16\\ \Leftrightarrow x^4-4x^3-4x^2+16x+16=0\\ \Leftrightarrow\left(x^2-2x-4\right)^2=0\\ \Leftrightarrow x^2-2x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
Thử lại ta thấy \(x=-\dfrac{3}{2}\text{ không thỏa mãn; }x=1-\sqrt{5}\text{ không thỏa mãn}\)
Vậy PT có nghiệm \(x=1+\sqrt{5}\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Phương trình đã cho tương đương :
\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)
\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)
Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :
\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)
Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)
Khi đó pt (*) có dạng :
\(3x.a=2.\left(x^2-a^2\right)\)
\(\Leftrightarrow2x^2-3xa-2a^2=0\)
\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)
\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)
\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)
+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )
+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)
\(\Leftrightarrow4x^2=2x-1\)
\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )
Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)
\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2-4x+4\right)\)
\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2\right)+\left(2x-2\right)^2\)
\(\Leftrightarrow x^4-\left(2x-2\right)^2+\left(x-1\right)\left(x^2+2x-2\right)=0\)
\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)+\left(x-1\right)\left(x^2+2x-2\right)=0\)
\(\Leftrightarrow\left(x^2+2x-2\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x-2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Leftrightarrow x^2+2x-2=0\) (bấm máy)
Đặt x-1=t (a) x^2-2x+2=v (b)
x^4=(v+2t)^2
(v+2t)^2+v*t=0 (*)\(\Rightarrow\) v^2+6vt+4t^2=0\(\Rightarrow\) (v/t)^2+6v/t+4=0 \(\Rightarrow\frac{v}{t}=-1;-2\)
Thay vào (*) tìm ra t hoặc v sau đó thay vào (a) và (b) là đươc ...
\(x^4+\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^4+\left(x^3+8\right)\)
\(x^4+\left(x+2\right)\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^4+\left(x+2\right)\left(x^2-2x+4\right)=8\). Đơn giản hóa dần PT. Ta có
\(\Rightarrow x^4+\left(x+2\right)\left(x^2-2\right)=8-4=4\)
\(\Rightarrow x^4+\left(x+2\right)\left(x^2\right)=4-2=2\)
\(\Rightarrow x^4+x\times x^2=x^4+x^3=2-2=0\)
\(\Rightarrow PT=0\Rightarrow\)Phương trình vô nghiệm