K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x-5=9

=>x=14

b: căn x-10=-2

=>\(x\in\varnothing\)

c: căn 2x-1=căn 5

=>2x-1=5

=>2x=6

=>x=3

d: căn 4-5x=12

=>4-5x=144

=>5x=-140

=>x=-28

e: =>7|x-1|=35

=>|x-1|=5

=>x-1=5 hoặc x-1=-5

=>x=6 hoặc x=-4

f: =>\(\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

=>x+3=0 hoặc x-3=25

=>x=28 hoặc x=-3

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c

 

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$

ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)Bài 4:a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1c, √x+4−√1−x=√1−2xx+4−1−x=1−2xd,√x+9=5−√2x+4x+9=5−2x+4Bài 5:a, √x+4√x+4=5x+2x+4x+4=5x+2b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72Ví Dụ...
Đọc tiếp

ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)

Bài 4:

a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3

b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1

c, √x+4−√1−x=√1−2xx+4−1−x=1−2x

d,√x+9=5−√2x+4x+9=5−2x+4

Bài 5:

a, √x+4√x+4=5x+2x+4x+4=5x+2

b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4

c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2

d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72

Ví Dụ 1:

a, √2x−1=√2−12x−1=2−1

b, √x+5=3−√2x+5=3−2

c, √3x2−√12=03x2−12=0

d, √2(x−1)−√50=02(x−1)−50=0

Thu gọn

ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)

Bài 4:

a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3

b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1

c, √x+4−√1−x=√1−2xx+4−1−x=1−2x

d,√x+9=5−√2x+4x+9=5−2x+4

Bài 5:

a, √x+4√x+4=5x+2x+4x+4=5x+2

b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4

c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2

d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72

Ví Dụ 1:

a, √2x−1=√2−12x−1=2−1

b, √x+5=3−√2x+5=3−2

c, √3x2−√12=03x2−12=0

d, √2(x−1)−√50=02(x−1)−50=0

 

2
29 tháng 7 2021

undefined

Bạn vô đó để viết lại đề nha!

29 tháng 7 2021

Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

1 tháng 6 2021

a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).

Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).

Đẳng thức xảy ra khi và chỉ khi x = -1.

Vậy..

1 tháng 6 2021

b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)

Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)

Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt

Xét \(x\ge1\) 

Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)

\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)

\(\Leftrightarrow0\le-1\) (vô lí)

Vậy x=0

c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\)  (đk: \(1\le x\le3\))

Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt

Xét \(x\ne1\)

Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)

Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)

Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\) 

\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)

Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\)  \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)

Từ (1) => x-1=0 <=> x=1

Vậy pt có nghiệm duy nhất x=1