Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
Bài 1
a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)
b/
\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)
\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
1.
c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)
\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
a,x3+3x2+3x+1
b,x2+6x+9
c,-x3+9x2-27x+27
d,x2+4x+4
k,10x-25-x2
f,(x+y)2-9x2
g,8x3+42x2y+16xy2+6xy+y3
a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)
b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)
d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)
f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)
\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
a) \(\Rightarrow\left(x-1\right)^3=0\Rightarrow x=1\)
b) \(\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(do \(\left\{{}\begin{matrix}x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\))
c) \(\Rightarrow4x\left(x^2-9\right)=0\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(x-2\right)^3=0\Rightarrow x=2\)
a) \(x^3-3x^2+3x-1=0\Rightarrow\left(x-1\right)^3=0\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(x^6-1=0\Rightarrow\left(x^3\right)^2-1=0\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^3-1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(4x^3-36x=0\Rightarrow4x\left(x^2-36\right)=0\Rightarrow4x\left(x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x=0\\x-6=0\\x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
d) \(x^3-6x^2+12x-8=0\) (đề bài như vậy mới làm đc, nếu là +8 thì mình xin bó tay nhé)
\(\Rightarrow x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3=0\)
\(\Rightarrow\left(x-2\right)^3=0\Rightarrow x-2=0\Rightarrow x=2\)
\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)
a) \(\left(x-2\right)^2\)
b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)
d) \(\left(x+1\right)^3\)
e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)
f) \(\left(x+3\right)^2\)
g) \(-\left(x-5\right)^2\)
h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
=>(x-3)(x+2)(x+4)=0
=>\(\hept{\begin{cases}x-3=0\\x+2=0\\x+4=0\end{cases}=>\hept{\begin{cases}x=3\\x=-2\\x=-4\end{cases}}}\)
d)=>(x-4)(x-1)(x+2)=0
=>\(\hept{\begin{cases}x-4=0\\x-1=0\\x+2=0\end{cases}=>\hept{\begin{cases}x=4\\x=1\\x=-2\end{cases}}}\)
Ai k mk mk sẽ k lại
Nguyễn Quốc Phương bạn giải rõ giùm mik đc ko ạ hi