K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Câu 5 đáng lẽ phải có điều kiện gì mới được chứ.

VD

a=2,

b=c=d=e=g=1

Thấy vào thì 9≥10 là vô lí

24 tháng 4 2017

Bài 1 :

Gọi tử số là x => Mẫu số là x - 8

Nếu thêm tử hai đơn vị thì tử mới là : \(x+2\)

Nếu bớt mẫu 3 đơn vị thì mẫu mới là : \(x-11\)

Mà phân số mới là \(\dfrac{3}{4}.\)

Theo đề bài , ta có phương trình :

\(\dfrac{x+2}{x-11}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(x+2\right)=3\left(x-11\right)\)

\(\Leftrightarrow4x+8=3x-33\)

\(\Leftrightarrow x=-41\)

Vậy tử là -41

mẫu là -49

24 tháng 4 2017

Bài 3 : \(\dfrac{x-1}{4}+1\ge\dfrac{x+1}{3}\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{12}+\dfrac{12}{12}\ge\dfrac{4\left(x+1\right)}{12}\)

\(\Leftrightarrow3x-3+12\ge4x+4\)

\(\Leftrightarrow-x\ge-5\)

\(\Leftrightarrow x\le5\)

Vậy...............

1 tháng 10 2021

\(6,\\ a,P=9\left(x^2-2\cdot\dfrac{1}{9}x+\dfrac{1}{81}\right)+\dfrac{26}{9}=9\left(x-\dfrac{1}{9}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\\ P_{min}=\dfrac{26}{9}\Leftrightarrow x-\dfrac{1}{9}=0\Leftrightarrow x=\dfrac{1}{9}\\ b,Q=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\\ Q_{min}=\dfrac{1}{4}\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\\ c,R=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\\ R_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

9 tháng 4 2017

Vì EG//DC=> AE/AD=AG/AC(Ta-lét)

Vì GH//BC=> AG/AC=AH/AB(Ta-lét)

=> AE/AD=AH/AB=> HE//BD (Ta-lét đào)
Phần b của bạn hình như sai đề

9 tháng 4 2017

mk ms sửa đề lại, bn giải hộ mk

Câu 4: 

\(\dfrac{3x+5}{16}-\dfrac{3x-5}{26}=\dfrac{3x-8}{29}-\dfrac{3x+8}{13}\)

\(\Leftrightarrow\left(\dfrac{3x+5}{16}+1\right)-\left(\dfrac{3x-5}{26}+1\right)=\left(\dfrac{3x-8}{29}+1\right)-\left(\dfrac{3x-8}{13}+1\right)\)

\(\Leftrightarrow\left(3x+21\right)\left(\dfrac{1}{16}-\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{13}\right)=0\)

=>3x+21=0

hay x=-7

25 tháng 3 2017

Bài 1:

a) Ta có: AB // CD (ABCD là hình chữ nhật; AB,CD là cạnh đối);

=> DBA = BDC (so le trong) (1)

Xét: \(\Delta\) AHB và \(\Delta\) BCD có:

AHB = BCD =900 (gt)

DBA = BDC (theo (1))

Do đó \(\Delta\) AHB đồng dạng \(\Delta\) BCD (g-g)

b) Ta có: *AB = CD = 12(cm)

* \(\Delta\) BCD vuông tai C(gt)

=> BC2 + CD2= BD2

hay 92 + 122 = BD2

=> BD2 = 225

=> BD = \(\sqrt{225}\) =15

Ta có: \(\Delta\) AHB đồng dạng \(\Delta\) BCD (Cmt)

=> \(\dfrac{AH}{BC}\) = \(\dfrac{AB}{BD}\) hay \(\dfrac{AH}{9}\) = \(\dfrac{12}{15}\)

=> AH = \(\dfrac{9.12}{15}\) = 7,2

c) Ta có: \(\Delta\) AHB vuông tại A(gt)

=> HB2 = AB2 - AH2

hay HB2 = 122 - 7,22 = 92,16

=> HB = \(\sqrt{92,16}\) = 9,6

Ta có : S\(\Delta AHB\) =\(\dfrac{AH.HB}{2}\) = \(\dfrac{7,2.9,6}{2}\) = 34.56

26 tháng 3 2017

bài 3:

A C B H 15cm 12cm

9 tháng 4 2017

AE*BH=AH*DE chứ

2 tháng 4 2017

B11:

theo đề bài, ta có: AB=CD=4cm

BC=AD=3cm

áp dụng ĐL pytago vào tam giác vuông ADB, ta có:

\(AB^2+AD^2=DB^2\Rightarrow BD=5cm\)

ta có công thức: \(AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}=2,4cm\)

áp dụng ĐL pytago vào tam giác vuông ADH, ta có:

\(AH^2+DH^2=AD^2\\ \Rightarrow DH=1,8cm\)