Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hệ \(\hept{\begin{cases}x^2+y^2-3x+4y=1\\3x^2-2y^2-9x-8y=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+3y^2-9x+12y=3\left(1\right)\\3x^2-2y^2-9x-8y=3\left(2\right)\end{cases}}}\)
Lấy (1)-(2) ta có \(5y^2+20y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-4\end{cases}}\)
Với \(y=0\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)
Với \(y=-4\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)
Vậy hệ có 4 nghiệm \(\left(x;y\right)=\left(0;\frac{3+\sqrt{13}}{2}\right);\left(0;\frac{3-\sqrt{13}}{2}\right);\left(-4;\frac{3+\sqrt{13}}{2}\right);\left(-4;\frac{3-\sqrt{13}}{2}\right)\)
\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)
\(\Rightarrow2x^2-xy+6x+y-8=0\)
\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)
Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)
Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)
Lời giải:
ĐK \(x,y,z\geq \frac{1}{4}\)
\(\text{HPT}\Rightarrow 2(x+y+z)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\sqrt{4x-1}=\sqrt{(4x-1).1}\leq \frac{4x-1+1}{2}=2x\)
Tương tự với các biểu thức còn lại.....
\(\Rightarrow \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\leq 2(x+y+z)\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 4x-1=1\\ 4y-1=1\\ 4z-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{1}{2}\end{matrix}\right.\)
Vậy HPT có nghiệm \((x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\)
đề gì thế bạn, căn 1 thì viết vào làm gì còn mấy số díu dít vô nhau kia nx