K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi F là biến cố “ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Biến cố \(\overline F \) là “ Cả hai con xúc xắc đều không xuất hiện mặt 6 chấm”.

Ta có \(n\left( \Omega  \right) = 36\) và \(\overline F  = \left\{ {\left( {i;j} \right),1 \le i;j \le 5} \right\}\) do đó \(n\left( {\overline F } \right) = 25\).

Vậy \(P\left( {\overline F } \right) = \frac{{25}}{{36}}\) nên \(P\left( F \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).

Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\).

28 tháng 4 2023

\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)

\(\Rightarrow n\left(\Omega\right)=6\)

Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)

\(A=\left\{3,4,5,6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)

28 tháng 4 2023

Không gian mẫu: Ω= {1;2;3;4;5;6}   →n(Ω)=6

Gọi biến cố A:" Xuất hiện trên hai mặt chấm"

A ={3;4;5;6}    ➝n(A)= 4

Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).

b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).

c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).

Sửa đề: Xuất hiện mặt 2 chấm

n(A)=1

n(omega)=6

=>P(A)=1/6

Δ=b^2-4*1*2=b^2-8

Để phương trình vô nghiệm thì b^2-8<0

=>-2 căn 2<b<2 căn 2

=>b=1 hoặc b=2

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\)

Gọi E là biến cố \(E = \left\{ {\left( {1,1} \right);\left( {1;2} \right);\left( {1,3} \right);\left( {2  ;1} \right);\left( {2;2} \right);\left( {3,1} \right)} \right\}\) suy ra \(n\left( E \right) = 6\)

Vậy \(P\left( E \right) = \frac{6}{{36}} = \frac{1}{6}\).

Chọn B

Có thể là 2 lần chẵn 1 lần lẻ hoặc cả 3 lần đều chẵn

TH1: 2 chẵn, 1 lẻ

=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)

TH2: 3 lần đều chẵn

=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)

=>Có 27+27=54 cách

n(omega)=6*6*6=216

=>P=54/216=1/4

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:

\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)

b) Từ tập hợp mô tả biến cố ở câu a) ta có:

Có 6 kết quả thuận lợi cho biến  cố B

Có 3 kết quả thuận lợi cho biến cố C