Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)
Do đó: a=30; b=40; c=50
Bài 4:
a: \(\dfrac{x}{0.9}=\dfrac{5}{6}\)
\(\Leftrightarrow x=\dfrac{5}{6}\cdot\dfrac{9}{10}=\dfrac{3}{4}\)
b: \(\dfrac{-6}{x}=\dfrac{9}{-15}\)
\(\Leftrightarrow x=\dfrac{\left(-15\right)\cdot\left(-6\right)}{9}=10\)
Bài 4:
a: \(\dfrac{x}{0.9}=\dfrac{5}{6}\)
\(\Leftrightarrow x=\dfrac{5}{6}\cdot\dfrac{9}{10}=\dfrac{3}{4}\)
b: \(\dfrac{-6}{x}=\dfrac{9}{-15}\)
\(\Leftrightarrow x=\dfrac{-6\cdot\left(-15\right)}{9}=10\)
Bài 4:
Theo đề, ta có: 6a=2b=-4c=5d
\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)
Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17
\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)
Bài 3:
Gọi vận tốc xe 2 là x
Vận tốc xe 1 là x+15
Theo đề, ta có:
\(\dfrac{300}{x}-\dfrac{300}{x+15}=\dfrac{5}{3}\)
\(\Leftrightarrow5x\left(x+15\right)=900\left(x+15\right)-900x\)
\(\Leftrightarrow x^2+15x-2700=0\)
\(\Delta=15^2-4\cdot1\cdot\left(-2700\right)=11025\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-15-105}{2\cdot1}=-60\left(loại\right)\\x_2=\dfrac{-15+105}{2}=45\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc xe 1 là 60km/h; Vận tốc xe 2 là 45km/h
https://olm.vn/hoi-dap/detail/212899860100.html , tham gia có thưởng
Bài 4
a) Do AB < AC < BC (6 < 8 < 10)
⇒ ∠ACB < ∠ABC < ∠BAC
b) Do BI là tia phân giác của ∠ABC (gt)
⇒ ∠ABI = ∠CBI
⇒ ∠ABI = ∠HBI
Xét hai tam giác vuông: ∆ABI và ∆HBI có:
BI là cạnh chung
∠ABI = ∠HBI (cmt)
⇒ ∆ABI = ∆HBI (cạnh huyền - góc nhọn)
c) Do ∆ABI = ∆HBI (cmt)
⇒ AB = BH (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AH (1)
Do ∆ABI = ∆HBI (cmt)
⇒ AI = HI (hai cạnh tương ứng)
⇒ I nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ BI là đường trung trực của AH
d) ∆CHI vuông tại H
⇒ IC là cạnh huyền nên CI là cạnh lớn nhất
⇒ HI < IC
Mà HI = IA (cmt)
⇒ IA < IC
e) ∆ABC vuông tại A (gt)
⇒ CA ⊥ AB
⇒ CA ⊥ BK
⇒ CA là đường cao của ∆BCK
Do IH ⊥ BC (gt)
⇒ KH ⊥ BC
⇒ KH là đường cao của ∆BCK
∆BCK có:
CA là đường cao (cmt)
KH là đường cao (cmt)
Mà I là giao điểm của CA và KH
⇒ BI là đường cao thứ ba của ∆BCK
⇒ BI KC
f) Xét hai tam giác vuông: ∆AIK và ∆HIC có:
AI = HI (cmt)
∠AIK = ∠HIC (đối đỉnh)
⇒ ∆AIK = ∆HIC (cạnh góc vuông - góc nhọn kề)
⇒ IK = IC (hai cạnh tương ứng)
Bài 3:
a: Xét ΔBAK và ΔBIK có
BA=BI
\(\widehat{ABK}=\widehat{IBK}\)
BK chung
Do đó: ΔBAK=ΔBIK
b: Ta có: ΔBAK=ΔBIK
=>\(\widehat{BAK}=\widehat{BIK}\)
=>\(\widehat{BIK}=90^0\)
=>KI\(\perp\)BC
Ta có: ΔBAK=ΔBIK
=>KA=KI
mà KI<KC(ΔKIC vuông tại I)
nên KA<KC
c: Ta có: \(\widehat{CAI}+\widehat{BAI}=\widehat{BAC}=90^0\)
\(\widehat{HAI}+\widehat{BIA}=90^0\)(ΔHAI vuông tại H)
mà \(\widehat{BAI}=\widehat{BIA}\)(ΔBAI cân tại B)
nên \(\widehat{CAI}=\widehat{HAI}\)
=>AI là phân giác của góc HAC
d: Ta có: BA=BI
=>B nằm trên đường trung trực của AI(1)
Ta có: KA=KI
=>K nằm trên đường trung trực của AI(2)
Từ (1) và (2) suy ra BK là đường trung trực của AI
=>BK\(\perp\)AI
Xét ΔBAI có
BK,AH là các đường cao
BK cắt AH tại O
Do đó: O là trực tâm của ΔBAI
=>IO\(\perp\)BA
mà IM\(\perp\)AB
và IM,IO có điểm chung là I
nên I,M,O thẳng hàng
Bài 5:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{MAB}=\widehat{MAC}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Ta có: AE=AF
=>A nằm trên đường trung trực của EF(1)
Ta có: KE=KF
=>K nằm trên đường trung trực của FE(2)
Ta có: ME=MF(ΔAEM=ΔAFM)
=>M nằm trên đường trung trực của FE(3)
Từ (1),(2),(3) suy ra A,K,M thẳng hàng
d:
Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
Ta có: AM\(\perp\) BC
AM//DC
Do đó: DC\(\perp\)BC
Ta có: \(\widehat{ACD}+\widehat{ACB}=\widehat{DCB}=90^0\)
\(\widehat{ADC}+\widehat{ABC}=90^0\)(ΔDCB vuông tại C)
mà \(\widehat{ACB}=\widehat{ABC}\)(ΔABC cân tại A)
nên \(\widehat{ACD}=\widehat{ADC}\)
=>AC=AD
mà AB=AC
nên AB=AD
=>A là trung điểm của BD