Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)
\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)
\(f\left(3\right)=1-2m\)
Hàm liên tục trên R khi:
\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)
6.
SAB cân tại S \(\Rightarrow SH\perp AB\)
Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)
Hay SH alf đường cao của chóp
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
5.
A là mệnh đề sai, vì các mặt bên của chóp đều luôn tạo với đáy các góc bằng nhau
6.
Do tam giác SAB cân tại S \(\Rightarrow SH\perp AB\) (trung tuyến đồng thời là đường cao)
Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\)
\(\Rightarrow SH\perp\left(ABCD\right)\)
Hay SH là đường cao của chóp
1.
\(y'=\dfrac{3}{\left(x+2\right)^2}\Rightarrow\left\{{}\begin{matrix}y'\left(-1\right)=3\\y\left(-1\right)=-2\end{matrix}\right.\)
Phương trình tiếp tuyến:
\(y=3\left(x+1\right)-2\Leftrightarrow y=3x+1\)
2.
\(y'=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=5\\y\left(1\right)=2\end{matrix}\right.\)
Phương trình tiếp tuyến:
\(y=5\left(x-1\right)+2\Leftrightarrow y=5x-3\)
3.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow\dfrac{x_0+3}{x_0-1}=2\Rightarrow x_0+3=2x_0-2\)
\(\Rightarrow x_0=5\)
\(\Rightarrow y'\left(5\right)=\dfrac{-4}{\left(5-1\right)^2}=-\dfrac{1}{4}\)
Phương trình tiếp tuyến:
\(y=-\dfrac{1}{4}\left(x-5\right)+2\Leftrightarrow y=-\dfrac{1}{4}x+\dfrac{13}{4}\)
4.
\(y'=2x+2\)
Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow x_0^2+2x_0+4=3\)
\(\Rightarrow x_0^2+2x_0+1=0\Rightarrow x_0=-1\)
\(\Rightarrow y'\left(-1\right)=2.\left(-1\right)+2=0\)
Tiếp tuyến:
\(y=0\left(x+1\right)+3\Leftrightarrow y=3\)