Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
Do M là trung điểm AB \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{AC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=-2\overrightarrow{MA}\)
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\)
\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
6.
Do ABCD là hbh \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
Lại có E là trung điểm CD \(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{DC}\)
Do đó:
\(\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\overrightarrow{u}+\dfrac{1}{2}\overrightarrow{v}\)
3.
\(A\cap\varnothing=\varnothing\) nên C sai
4.
Tập A có 3 phần tử nên có \(2^3=8\) tập con
Đặt y = f(x) = - 2x2 có đồ thị (C)
và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')
Ta có :
g(x) = - 2x2 - 6x + 3
= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)
= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)
= \(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)
Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')
Câu 13:
Ta có: \(f\left(x\right)>0\Leftrightarrow3x-m>0\Leftrightarrow3x>m\)
Mà x>1 hay 3x>3
Vậy \(m\le3\)
Đáp án C
Câu 14:
(d): x-2y+1=0 hay \(\dfrac{1}{2}x+\dfrac{1}{2}=y\)
Gọi phương trình đường thẳng cần tìm là: y=ax+b
Phương trình cần tìm đi qua A nên ta có: 2=-2a+b
Để phương trình cần tìm vuông góc với (d) thì: \(a.\dfrac{1}{2}=-1\Rightarrow a=-2\)\(\Rightarrow b=-2\)
Vậy phương trình cần tìm là: \(y=-2x-2\)
Đáp án C
Câu 11:
Gọi tọa độ chân đường cao kẻ từ A xuống BC là H(x;y)
=>\(AH\perp\)BC
A(-1;2); B(0;3); C(5;-2)
\(\overrightarrow{BC}=\left(5;-5\right);\overrightarrow{BH}=\left(x;y-3\right)\)
\(\overrightarrow{AH}=\left(x+1;y-2\right)\)
B,H,C thẳng hàng nên ta có: \(\dfrac{x}{5}=\dfrac{y-3}{-5}\)
=>x=-y+3
=>x+y=3(1)
AH\(\perp\)BC
=>\(\overrightarrow{AH}\cdot\overrightarrow{BC}=0\)
=>\(5\left(x+1\right)+\left(-5\right)\cdot\left(y-2\right)=0\)
=>\(\left(x+1\right)-\left(y-2\right)=0\)
=>x+1-y+2=0
=>x-y=-3(2)
Từ (1) và (2) ta có hệ phương trình
\(\left\{{}\begin{matrix}x+y=3\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x+y=3\end{matrix}\right.\)
=>x=0 và y=3
=>Chọn A
Câu 12:
B(-1;3); C(3;1); A(x;y)
\(\overrightarrow{AB}=\left(-1-x;3-y\right)\); \(\overrightarrow{AC}=\left(3-x;1-y\right)\)
\(AB=\sqrt{\left(-1-x\right)^2+\left(3-y\right)^2}=\sqrt{\left(y-3\right)^2+\left(x+1\right)^2}\)
\(AC=\sqrt{\left(3-x\right)^2+\left(1-y\right)^2}=\sqrt{\left(x-3\right)^2+\left(y-1\right)^2}\)
ΔABC vuông cân tại A
=>AB\(\perp\)AC và AB=AC
=>\(\left\{{}\begin{matrix}\overrightarrow{AB}\cdot\overrightarrow{AC}=0\\AB=AC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-1-x\right)\left(3-x\right)+\left(3-y\right)\left(1-y\right)=0\\\left(y-3\right)^2+\left(x+1\right)^2=\left(x-3\right)^2+\left(y-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\y^2-6y+9+x^2+2x+1=x^2-6x+9+y^2-2y+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\-6y+2x=-6x-2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(x-3\right)+\left(y-3\right)\left(y-1\right)=0\\8x=4y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x-3+y^2-4y+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x+y^2-4y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x\\x^2-2x+4x^2-4\cdot2x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x\\5x^2-10x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x\left(x-2\right)=0\\y=2x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=2x\end{matrix}\right.\)
\(x\left(x-2\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Khi x=0 thì \(y=2\cdot0=0\)
Khi x=2 thì \(y=2\cdot2=4\)
=>Chọn B
Câu 13: A(0;4); B(3;4); C(3;0)
\(AB=\sqrt{\left(3-0\right)^2+\left(4-4\right)^2}=3\)
\(AC=\sqrt{\left(3-0\right)^2+\left(0-4\right)^2}=\sqrt{3^2+4^2}=5\)
\(BC=\sqrt{\left(3-3\right)^2+\left(0-4\right)^2}=4\)
Vì \(AB^2+BC^2=AC^2\)
nên ΔABC vuông tại B
=>\(R=\dfrac{AC}{2}=2,5\)
=>Chọn A