K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

a) \(\left\{{}\begin{matrix}2x-7>0.\\5x+1>0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x>7.\\5x>-1.\end{matrix}\right.\) \(\left\{{}\begin{matrix}x>\dfrac{7}{2}.\\x>\dfrac{-1}{5}.\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{7}{2}.\) \(\Rightarrow x\in\left(\dfrac{7}{2};+\infty\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{7}{2};+\infty\right).\)

b) \(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\\7x-5< 0.\end{matrix}\right.\) \(\Leftrightarrow\text{​​}\text{​​}\)\(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\left(1\right)\\x< \dfrac{5}{7}.\left(2\right)\end{matrix}\right.\)

Xét (1): 

 \(2x+3=0.\Leftrightarrow x=\dfrac{-3}{2}.\\ x-1=0.\Leftrightarrow x=1.\)

Bảng xét dấu:

\(x\)                           \(-\infty\)             \(\dfrac{-3}{2}\)                \(1\)               \(+\infty\)          

\(2x+3\)                             -          \(0\)       +          |       +

\(x-1\)                               -          |         -          \(0\)      +

\(\left(2x+3\right)\left(x-1\right)\)              +         \(0\)         -          \(0\)      +

Vậy \(\left(2x+3\right)\left(x-1\right)>0.\Leftrightarrow\dfrac{-3}{2}< x< 1.\)

Kết hợp với (2).

\(\Rightarrow\) \(\dfrac{-3}{2}< x< \dfrac{5}{7}.\)

\(\Rightarrow x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

17 tháng 12 2021

Câu 58: B

Câu 59: C

20 tháng 12 2022

Giúp e với ạ e đang cần rất gấp ạ

NV
23 tháng 11 2021

1.1

Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:

\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b.

Pt có nghiệm kép khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)