K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20: \(\lim\limits_{x\rightarrow+\infty}x^3+2x-1=\lim\limits_{x\rightarrow+\infty}\left[x^3\left(1+\dfrac{2}{x^2}-\dfrac{1}{x^3}\right)\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow+\infty}x^3=+\infty\\\lim\limits_{x\rightarrow+\infty}1+\dfrac{2}{x^2}-\dfrac{1}{x^3}=1\end{matrix}\right.\)

 

NV
14 tháng 4 2022

7.

Hàm có đúng 1 điểm gián đoạn khi và chỉ khi \(x^2-2\left(m+2\right)x+4=0\) có đúng 1 nghiệm

\(\Rightarrow\Delta'=\left(m+2\right)^2-4=0\)

\(\Leftrightarrow m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=0\end{matrix}\right.\)

\(-4+0=-4\)

8.

Hàm gián đoạn khi \(x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Nên hàm đồng biến trên các khoảng \(\left(-\infty;-3\right);\left(-3;1\right);\left(1;+\infty\right)\) và các tập con của chúng

A đúng

 

10 tháng 9 2021

3.

\(4sinx+cosx+2cos\left(x+\dfrac{\pi}{3}\right)=2\)

\(\Leftrightarrow4sinx+cosx+cosx-\sqrt{3}sinx=2\)

\(\Leftrightarrow\left(4-\sqrt{3}\right)sinx+2cosx=2\)

\(\Leftrightarrow\sqrt{23-4\sqrt{3}}\left(\dfrac{4-\sqrt{3}}{\sqrt{23-4\sqrt{3}}}sinx+\dfrac{2}{\sqrt{23-4\sqrt{3}}}cosx\right)=2\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}\right)=\dfrac{2}{\sqrt{23-4\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}=\pm arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

10 tháng 9 2021

4.

\(sinx+2cos\left(x+\dfrac{\pi}{3}\right)+4sin\left(x+\dfrac{\pi}{6}\right)+cosx=4\)

\(\Leftrightarrow sinx+cosx-\sqrt{3}sinx+2\sqrt{3}sinx+2cosx+cosx=4\)

\(\Leftrightarrow\left(1+\sqrt{3}\right)sinx+4cosx=4\)

\(\Leftrightarrow\sqrt{20+2\sqrt{3}}\left(\dfrac{1+\sqrt{3}}{\sqrt{20+2\sqrt{3}}}sinx+\dfrac{4}{\sqrt{20+2\sqrt{3}}}cosx\right)=4\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}\right)=\dfrac{4}{\sqrt{20+2\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}=\pm arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
14 tháng 4 2022

5.

\(AA'\perp\left(A'B'C'D'\right)\) theo t/c lập phương

\(\Rightarrow AA'\perp B'C'\Rightarrow\) góc giữa 2 đường thẳng bằng 90 độ

6.

\(y'=\left(x.cosx\right)'=x'.cosx+\left(cosx\right)'.x=cosx-x.sinx\)

7.

\(y'=-3x^2-5\)

\(y''=-6x\)

8.

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+3x-2\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{3}{x}-\dfrac{2}{x^3}\right)=+\infty.1=+\infty\)

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

20 tháng 1 2023

Còn cách giải chi tiết hơn không ạ như này e chưa hiểu lắm

NV
14 tháng 4 2022

19.

\(y'=\dfrac{\left(x^2+3x-4\right)'}{2\sqrt{x^2+3x-4}}=\dfrac{2x+3}{2\sqrt{x^2+3x-4}}\)

20.

\(BC||AD\Rightarrow\) góc giữa BC và SD bằng góc giữa AD và SD

\(\Rightarrow\) Góc giữa BC và SD là góc \(\widehat{SDA}\)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\dfrac{a}{a}=1\Rightarrow\widehat{SDA}=45^0\)

22.

B là khẳng định sai

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp MB\) ; \(BC\perp SB\) ; \(BC\perp SA\)

NV
5 tháng 3 2022

EG là đường trung bình tam giác MNP \(\Rightarrow\left\{{}\begin{matrix}EG||MN\\EG=\dfrac{1}{2}MN=x\end{matrix}\right.\)

FG là đường trung bình tam giác MPQ \(\Rightarrow\left\{{}\begin{matrix}FG=\dfrac{1}{2}PQ=x\sqrt{2}\\FG||PQ\end{matrix}\right.\)

\(\Rightarrow\widehat{\left(MN;PQ\right)}=\widehat{\left(EG;FG\right)}\)

\(cos\widehat{EGF}=\dfrac{EG^2+FG^2-EF^2}{2EG.FG}=-\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{EGF}=135^0\)

\(\Rightarrow\widehat{\left(MN;PQ\right)}=180^0-135^0=45^0\)

6 tháng 3 2022

ơi trời ơi e cảm ơn idol thầyyeu

25 tháng 8 2021

1.

\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)

\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\)

\(\Leftrightarrow\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow2x+\dfrac{\pi}{3}=\pm\dfrac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

25 tháng 8 2021

2.

\(10cos^2x-5sinx.cosx+3sin^2x=4\)

\(\Leftrightarrow20cos^2x-10sinx.cosx+6sin^2x=8\)

\(\Leftrightarrow20cos^2x-10-10sinx.cosx+6sin^2x-3=-5\)

\(\Leftrightarrow7cos2x-5sin2x=-5\)

\(\Leftrightarrow\sqrt{74}\left(\dfrac{7}{\sqrt{74}}cos2x-\dfrac{5}{\sqrt{74}}sin2x\right)=-5\)

\(\Leftrightarrow cos\left(2x+arccos\dfrac{7}{\sqrt{74}}\right)=-\dfrac{5}{\sqrt{74}}\)

\(\Leftrightarrow2x+arccos\dfrac{7}{\sqrt{74}}=\pm arccos\dfrac{5}{\sqrt{74}}+k2\pi\)

\(\Leftrightarrow x=-\dfrac{1}{2}arccos\dfrac{7}{\sqrt{74}}\pm\dfrac{1}{2}arccos\dfrac{5}{\sqrt{74}}+k\pi\)

NV
14 tháng 4 2022

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) (A đúng)

\(AC\perp BD\) theo tính chất của hình vuông (2 đường chéo vuông góc) (B đúng)

\(SA\perp CD\) theo cmt (C đúng)

Do đó D sai