K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

nguu vcl

17 tháng 2 2022

báo cáo

NV
7 tháng 6 2021

7a.

\(y'=3x^2-2\left(m-1\right)x-m-3\)

Hàm nghịch biến trên \(\left(-1;0\right)\) khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(-1;0\right)\)

\(\Leftrightarrow3x^2-2\left(m-1\right)x-m-3\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+3\left(m+3\right)>0\\x_1\le-1< 0\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+10>0\left(\text{luôn đúng}\right)\\f\left(-1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}3+2\left(m-1\right)-m-3\le0\\-m-3\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m-3\le0\end{matrix}\right.\) \(\Leftrightarrow-3\le m\le2\)

NV
7 tháng 6 2021

7b.

\(y'=-x^2+2\left(m-1\right)x+m+3\)

Hàm đồng biến trên \(\left(0;3\right)\) khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(0;3\right)\)

\(\Leftrightarrow-x^2+2\left(m-1\right)x+m+3\ge0\) ; \(\forall x\in\left(0;3\right)\)

\(\Leftrightarrow m\left(2x+1\right)\ge x^2+2x-3\)

\(\Leftrightarrow m\ge\dfrac{x^2+2x-3}{2x+1}\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;3\right]}\dfrac{x^2+2x-3}{2x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{x^2+2x-3}{2x+1}\) trên \(\left(0;3\right)\)

\(f'\left(x\right)=\dfrac{2\left(x^2+x+4\right)}{\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)< f\left(3\right)=\dfrac{12}{7}\)

\(\Rightarrow m\ge\dfrac{12}{7}\)

NV
7 tháng 6 2021

\(y'=\left(m+3\right)x^2-4x+m\)

Hàm nghịch biến trên R khi và chỉ khi \(y'\le0\) ; \(\forall x\in R\)

- Với \(m=-3\) ko thỏa mãn

- Với \(m\ne-3\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m+3< 0\\\Delta'=4-m\left(m+3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\\left[{}\begin{matrix}m\ge1\\m\le-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m\le-4\)

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 

Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

NV
27 tháng 3 2022

3.

Xét \(I=\int\limits^1_0x^3f\left(x^2\right)dx=\int\limits^1_0x^2.f\left(x^2\right)xdx\)

Đặt \(x^2=t\Rightarrow x.dx=\dfrac{1}{2}dt;\) \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^1_0t.f\left(t\right).\dfrac{1}{t}dt=\dfrac{1}{2}\int\limits^1_0t.f\left(t\right)dt=3\)

\(\Rightarrow\int\limits^1_0t.f\left(t\right)dt=6\Rightarrow J=\int\limits^1_0x.f\left(x\right)dx=6\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow J=\dfrac{1}{2}x^2.f\left(x\right)|^1_0-\dfrac{1}{2}\int\limits^1_0x^2.f'\left(x\right)dx=2-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=6\)

\(\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=-8\)

NV
27 tháng 3 2022

4.

\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)cosx.e^{sinx}dx\)

Xét \(J=\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)cosx.e^{sinx}dx\)

Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)

\(\Rightarrow J=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx\)

\(\Rightarrow I=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+J=\left(\dfrac{\pi}{2}+1\right)e-1\)

8 tháng 12 2021

còn cái nịt

 

8 tháng 12 2021

Không giải hộ thì thôi đừng có mà ăn nói như thế :))

NV
27 tháng 2 2021

Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox

\(\Rightarrow V=V_1+V_2\)

\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)

\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)

\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)

\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)

\(\Rightarrow k=\dfrac{15}{7}\)