K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Mình không biết nha

26 tháng 10 2021

Bài 3 :

A B S M C P N x y 1 2 z 1 2

a) Kéo dài tia NM và NM cắt BC tại S

Khi đó ta có :

\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)

b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)

\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)

Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)

Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong 

=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau

31 tháng 10 2023

Bài 1

 loading... Do BO là tia phân giác của ∠ABC (gt)

⇒ ∠OBE = ∠OBI

Do AO là tia phân giác của ∠BAC (gt)

⇒ ∠OAE = ∠OAF

Xét hai tam giác vuông: ∆OAE và ∆OAF có:

OA chung

∠OAE = ∠OAF (cmt)

⇒ ∆OAE = ∆OAF (cạnh huyền - góc nhọn)

⇒ OE = OF (hai cạnh tương ứng) (1)

Xét hai tam giác vuông: ∆OBE và ∆OBI có:

OB chung

∠OBE = ∠OBI (cmt)

⇒ ∆OBE = ∆OBI (cạnh huyền - góc nhọn)

⇒ OE = OI (hai cạnh tương ứng) (2)

Từ (1) và (2) ⇒ OE = OF = OI

31 tháng 10 2023

Bài 2

loading... a) Xét hai tam giác vuông: ∆BMI và ∆CMK có:

BM = CM (gt)

∠BMI = ∠CMK (đối đỉnh)

⇒ ∆BMI = ∆CMK (cạnh huyền - góc nhọn)

⇒ BI = CK (hai canhk tương ứn

b) Do ∆BMI = ∆CMK (cmt)

⇒ MI = MK (hai cạnh tương ứng)

Xét ∆BMK và ∆CMI có:

MK = MI (cmt)

∠BMK = ∠CMI (đối đỉnh)

BM = CM (gt)

⇒ ∆BMK = ∆CMI (c-g-c)

⇒ ∠MBK = ∠MCI (hai góc tương ứng)

Mà ∠MBK và ∠MCI là hai góc so le trong)

⇒ BK // CI

28 tháng 8 2021

undefined

28 tháng 8 2021

Bài 3 đây bạnundefined

5 tháng 9 2021

???

4:

a: =>2/5x+7/20-2/20=1/10

=>2/5x+5/20=1/10

=>2/5x=1/10-1/4=4/40-10/40=-6/40=-3/20

=>x=-3/20:2/5=-3/20*5/2=-15/40=-3/8

b: 3/2-1/2x=-1/3+3=8/3

=>1/2x=3/2-8/3=9/6-16/6=-7/6

=>x=-7/6*2=-7/3

c: 15/8-1/8:(1/4x-0,5)=5/4

=>1/8:(1/4x-1/2)=15/8-5/4=15/8-10/8=5/8

=>1/4x-1/2=1/8:5/8=1/5

=>1/4x=1/5+1/2=7/10

=>x=7/10*4=28/10=2,8

d: \(\Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^3-\dfrac{5}{4}\right]=\dfrac{11}{4}-\dfrac{5}{8}=\dfrac{22-5}{8}=\dfrac{17}{8}\)

=>\(\left(x+\dfrac{1}{2}\right)^3=\dfrac{17}{8}+\dfrac{5}{4}=\dfrac{27}{8}\)

=>x+1/2=3/2

=>x=1

AH
Akai Haruma
Giáo viên
5 tháng 9 2021

Bài 1:

Vì $AQ\parallel BR$ nên $\widehat{PQA}=\widehat{QRB}$ (hai góc đồng vị )

$\Rightarrow \widehat{QRB}=x$

Lại có:

$Q,R,S$ thẳng hàng nên

$\widehat{QRS}=180^0$

$\widehat{QRB}+\widehat{BRC}+\widehat{CRS}=180^0$

$x+2x+75^0=180^0$

$3x+75^0=180^0$

$x=35^0$

AH
Akai Haruma
Giáo viên
5 tháng 9 2021

Hình bài 3

24 tháng 8 2018

\(-\frac{1}{7}+\frac{5}{3}+\frac{5}{4}+\frac{1}{3}-\frac{3}{2}\)

\(=\left(-\frac{1}{7}+\frac{5}{3}-\frac{3}{2}\right)+\left(\frac{5}{3}+\frac{1}{3}\right)\)

\(=\frac{-6}{42}+\frac{70}{42}-\frac{63}{42}+\frac{6}{3}\)

\(=\frac{-6+70-63}{42}+2\)

\(=\frac{1}{42}+\frac{84}{42}\)

\(=\frac{85}{42}\)

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.