Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
2BF=BF+BC>FC
Bài 9:
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
Xét ΔABM và ΔDEN có
AB=DE
\(\widehat{B}=\widehat{E}\)
BM=EN
Do đó: ΔABM=ΔDEN
Suy ra: AM=DN
Ta có:
ΔABC=ΔDEF(gt)ΔABC=ΔDEF(gt)
⇒⎧⎪⎨⎪⎩AB=DEˆABC=ˆABM=ˆDEF=ˆDENBC=EF⇒{AB=DEABC^=ABM^=DEF^=DEN^BC=EF
Ta lại có:
⎧⎪ ⎪⎨⎪ ⎪⎩BM=MC=12BC(gt)EN=NF=12EF(gt){BM=MC=12BC(gt)EN=NF=12EF(gt)
⇒BM=MC=EN=NF⇒BM=MC=EN=NF
Xét ΔABMΔABM và ΔDENΔDEN có:
AB=DE(ΔABC=ΔDEF)AB=DE(ΔABC=ΔDEF)
ˆABM=ˆDEN(cmt)ABM^=DEN^(cmt)
BM=EN(cmt)BM=EN(cmt)
Do đó ΔABM=ΔDEN(c.g.c)ΔABM=ΔDEN(c.g.c)
⇒AM=DN (Hai cạnh tương ứng)
sr bạn mình ko bk vẽ hình trên đây
a: BC=5cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Ta có: ΔABD=ΔEBD
nên DA=DE
mà DE<DC
nên DA<DC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
góc ABI=góc HBI
=>ΔBAI=ΔBHI
=>IA=IH
mà IH<IC
nên IA<IC
c: Xét ΔIAK vuông tại A và ΔIHC vuông tại H có
IA=IH
góc AIK=góc HIC
=>ΔIAK=ΔIHC
=>AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
Lời giải:
Vì $I$ nằm trên đường trung trực của $BC$ nên $BI=CI$
Vì $I$ nằm trên đường phân giác $\widehat{BAC}$ nên khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$
$\Rightarrow IH=IK$
Xét tam giác vuông $IHB$ và $IKC$ có:
$IH=IK$ (cmt)
$IB=IC$ (cmt)
$\Rightarrow \triangle IHB=\triangle IKC$ (ch-gn)
$\Rightarrow HB=KC$ (đpcm)
a: \(\widehat{ACB}=90^0-60^0=30^0\)
b: Xét ΔABH và ΔKBH có
BA=BK
BH chung
AH=KH
Do đó: ΔABH=ΔKBH
Ta có: ΔABK cân tại B
mà BI là đường trung tuyến
nên BI là đường cao