Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\Delta BPC\sim\Delta BMH\left(g-g\right)\Rightarrow\frac{BP}{BM}=\frac{BC}{BH}\) hay BM.BC = BP.BH.
b. Ta có: \(\Delta HNB\sim\Delta HPC\left(g-g\right)\Rightarrow\frac{HN}{HB}=\frac{HP}{HC}\Rightarrow\Delta HNP\sim\Delta HBC\left(c-g-c\right)\)
hay góc PNH = HBC. Tương tự góc MNC = CBH. Vậy thì góc PNH = MNC, từ đó suy ra góc MNB = PNB (Cùng phụ với hai góc trên).
Vậy thi NA là phân giác góc PNM.
c. Ta thấy \(BC.AH=BC\left(HM-AM\right)=BC.MH-BC.AM=\frac{S}{2}-\frac{S_{ABC}}{2}\)
Tương tự \(AB.CH=\frac{S}{2}-\frac{S_{AHC}}{2};AC.VH=\frac{S}{2}-\frac{S_{ABH}}{2}\)
Vậy thì \(BC.AH+AB.CH+AC.BH=\frac{3S}{2}-\frac{S_{ABC}+S_{AHC}+S_{AHB}}{2}=\frac{3S}{2}-\frac{S}{2}=S.\)
1: ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN đồng dạng vớiΔACB
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm