K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

A B C D H K I E F d M

Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt  AC tại H và K.

Gọi giao điểm 2 đường chéo của hình bình hành ABCD.

Áp dụng định lí Ta-lét, ta có các tỉ số :

\(\frac{AB}{AE}=\frac{AH}{AM}\)\(\frac{AD}{AF}=\frac{AK}{AM}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)

Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)

\(\Rightarrow IH=IK\)

Thay vào (1) ta được :

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)

Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)

13 tháng 6 2018

A B C D E F O I H K d

Qua B và D kẻ 2 đường thẳng song song với d cắt đường chéo AC của hbh ABCD tại H và K.

Gọi I là tâm đối xứng của hbh ABCD.

Áp dụng ĐL Thales ta có các tỉ số: \(\frac{AB}{AE}=\frac{AH}{AO};\frac{AD}{AF}=\frac{AK}{AO}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH+AK}{AO}=\frac{2AK+IH+IK}{AO}\)(*)

Dễ thấy \(\Delta\)BHI=\(\Delta\)DKI (g.c.g) => IH=IK, thay vào (*)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AO}=\frac{2\left(AK+IK\right)}{AO}=\frac{2AI}{AO}\)

Mà AI=1/2AC => \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)(đpcm).

28 tháng 6 2018

Cảm ơn nhiều nhak ^_^

9 tháng 2 2018

A A B B C C M M D D E E F F

a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)

\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)

Vậy nên DE + DF = 2AM.

b) Theo định lý Ta let ta có:

\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)

14 tháng 1 2018

A B D C F E

Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)

Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)

Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)