K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC

Bài 9:

a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có

AM chung

MD=MI

Do đó: ΔAMD=ΔAMI

Xét ΔAND vuông tại N và ΔANK vuông tại N có

AN chung

ND=NK

Do đó: ΔAND=ΔANK

b: ta có: ΔAMD=ΔAMI

=>\(\widehat{MAD}=\widehat{MAI}\)

=>\(\widehat{DAB}=\widehat{IAB}\)

mà tia AB nằm giữa hai tia AD,AI

nên AB là phân giác của góc DAI

=>\(\widehat{DAI}=2\cdot\widehat{DAB}\)

Ta có: ΔAND=ΔANK

=>\(\widehat{DAN}=\widehat{KAN}\)

=>\(\widehat{DAC}=\widehat{KAC}\)

mà tia AC nằm giữa hai tia AD,AK

nên AC là phân giác của góc DAK

=>\(\widehat{DAK}=2\cdot\widehat{DAC}\)

Ta có: \(\widehat{DAK}+\widehat{DAI}=\widehat{KAI}\)

=>\(\widehat{KAI}=2\cdot\left(\widehat{DAB}+\widehat{DAC}\right)\)

=>\(\widehat{KAI}=2\cdot\widehat{BAC}=180^0\)

=>K,A,I thẳng hàng

c: Ta có: AD=AI(ΔADM=ΔAIM)

AD=AK(ΔADN=ΔAKN)

Do đó: AI=AK

mà K,A,I thẳng hàng

nên A là trung điểm của KI

d: Xét tứ giác AMDN có 

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

=>AMDN là hình chữ nhật

Hình chữ nhật AMDN có AD là phân giác của góc MAN

nên AMDN là hình vuông

=>DA là phân giác của góc NDM

=>DA là phân giác của góc KDI

Xét ΔDKI có

DA là đường trung tuyến

DA là đường phân giác

Do đó: ΔDKI cân tại D

Ta có: ΔDKI cân tại D

mà DA là đường trung tuyến

nên DA\(\perp\)KI

27 tháng 11 2021

Bài nào ạ. Ảnh bị lỗi.

a: Ta có: \(\left|x+\dfrac{1}{2}\right|\ge0\forall x\)

\(\left|y-\dfrac{3}{4}\right|\ge0\forall y\)

\(\left|z-1\right|\ge0\forall z\)

Do đó: \(\left|x+\dfrac{1}{2}\right|+\left|y-\dfrac{3}{4}\right|+\left|z-1\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(-\dfrac{1}{2};\dfrac{3}{4};1\right)\)

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

15 tháng 7 2021

) Xét ΔOBH và ΔODA có 

OB=OD(gt)

ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)

mà ˆOHB=900OHB^=900(gt)

nên ˆOAD=900OAD^=900

hay AH⊥⊥AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

9 tháng 8 2023

thiếu đề ạ 

9 tháng 8 2023

ơ đủ đề rồi ạ

Bài 3:

a) Ta có: \(A-\left(9x^3+8x^2-2x-7\right)=-9x^3-8x^2+5x+11\)

\(\Leftrightarrow A=-9x^3-8x^2+5x+11+9x^3+8x^2-2x-7\)

\(\Leftrightarrow A=3x+4\)

b) Đặt A(x)=0

nên 3x+4=0

hay \(x=-\dfrac{4}{3}\)

22 tháng 7 2021

Bạn có biết giải bài hình k giúp mình với 21:00 mình phải nộp rồi 

1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5

Bậc là 8

Phần biến là x^3;y^5

Hệ số là -2

2:

a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6

=3x^4-2x^3+4x^2+3x-6

Q(x)=2x^4+4x^2-2x^3+x^4+3

=3x^4-2x^3+4x^2+3

b: A(x)=P(x)-Q(x)

=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3

=3x-9

A(x)=0

=>3x-9=0

=>x=3

31 tháng 1 2023

tách ra bn nhé

Bài 5:

a: Xét tứ giác ABEC có

I là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>AB=EC

b: Vì ABEC là hình bình hành

nên AC//BE

c: Xét tứ giác AMEN có

AM//EN

AM=EN

Do đó; AMEN là hình bình hành

=>AE cắt NM tại trung điểm của mỗi đường

=>M,I,N thẳng hàng

Bài 2:

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{30}{5}=6\)

=>x=12; y=18

b: Đặt x/2=y/3=k

=>x=2k; y=3k

xy=54

=>6k^2=54

=>k^2=9

TH1: k=3

=>x=6; y=9

TH2: k=-3

=>x=-6; y=-9

c: x/2=y/3

=>x/8=y/12

y/4=z/5

=>y/12=z/15

=>x/8=y/12=z/15

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{3x+2y-4z}{3\cdot8+2\cdot12-4\cdot15}=\dfrac{-24}{-12}=2\)

=>x=16; y=24; z=30

d: 2x=3y=4z

=>x/6=y/4=z/3=k

=>x=6k; y=4k; z=3k

\(A=\dfrac{5x+7y-3z}{3x-2y+5z}\)

\(=\dfrac{30k+28k-9k}{18k-8k+15k}=\dfrac{49}{25}\)