K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{3}=\dfrac{2.8}{4}\)

\(\Leftrightarrow BD=\dfrac{2.8\cdot3}{4}=\dfrac{8.4}{4}=2.1\left(cm\right)\)

Vậy: BD=2,1cm

12 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)

=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)

=> Δ AHB ∾ Δ CHA (cmt)

 

 

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có:

\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)

Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)

b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

25 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/giup-2-cau-cuoi-thoicho-dabc-tai-a-co-ab21cm-ac28cm-ad-phan-giac-bac-d-bcatinh-db-dcb-ke-de-ac-tinh-de-ecccm-dabcdedc-hay-tinh.4844365471752

 

25 tháng 2 2022

-Chỉ thiếu câu b thôi nhé.

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

BC=căn 3^2+4^2=5cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4

=>BD/3=CD/4=5/7

=>BD=15/7cm; CD=20/7cm

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

7 tháng 4 2017

A B C D 4cm 6cm

amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)

Áp dụng tính chất của đường phân giác ,ta có:

\(\frac{DB}{DC}\)\(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)

b,theo câu a ta có :

\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)

                         \(\Leftrightarrow DB=\frac{2.3}{3}\) 

                          \(\Leftrightarrow DB=2\)

6 tháng 5 2019

Áp dụng định lí trên ta có: Δ ABC, AD là đường phân giác của góc B A C ^  ( D ∈ BC )

Ta có DB/AB = DC/AC hay 2/3 = DC /4 ⇒ DC = (2.4)/ 3 = 8/3 = 2,(6 ) ( cm )