Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
Với x=0 ta có:
0=-4.f(0)
=>f(0)=0
=>0 là 1 nghiệm của f(x)(1)
Với x=4 ta có:
4.f(4-2)=0
<=>4.f(2)=0
<=>f(2)=0
=>2 là 1 nghiệm của f(x)(2)
Từ 1 và 2 =>f(x) luôn có 2 nghiệm là 0 và 2 hay f(x) có ít nhất 2 nghiệm
a) Ta có: a = 1 ≠ 0
Δ' = 1 - 3.1= -2 < 0 --> đa thức vô nghiệm.
b) Ta có: a= 4 ≠ 0
Δ' = 22 - 4.7 = -24 < 0 --> vô nghiệm.
c) x.( x +1) +5 = x2 + x +5 . a=1 ≠ 0
Δ= 1 - 5 = -4 < 0 --> vô nghiệm
Câu d) tương tự.....
~ à rề rế ~ ... ko bt làm hay tương tự thật vậy...
câu d khác nhất trong tất cả 4 câu mà...
P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x
Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên
b) Theo hệ thức Vi ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m-2}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2-2m}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
Ta có:
\(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1=1013\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)+1\)
\(=1013\left(\dfrac{x_1+x_2}{x_1.x_2}\right)+1=1013\left(\dfrac{\dfrac{2-2m}{m}}{\dfrac{m-1}{m}}\right)+1\)
\(=1013.\dfrac{-2\left(m-1\right)}{m-1}+1=-2026+1=-2025\), luôn là hằng số (đpcm)
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn
- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)
Do \(\alpha\) là nghiệm nên:
\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)
\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)
\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)
\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)
TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)
TH2: Nếu \(\left|\alpha\right|>1\)
\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)
\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)
Ta có:
\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(x+1\right)^2\ge0\)
Dấu = xảy ra khi
\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (vô lý)
Vậy đa thức vô nghiệm.