K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

a/

\(\Delta\)vuông AHB có HE đường cao \(\Rightarrow\)AE.AB=AH2

\(\Delta\)vuông AHC có HF đường cao \(\Rightarrow\)AF.AC=AH2

\(\Rightarrow\)AE.AB=AF.AC

b/ CÁC PHƯƠNG PHÁP CHỨNG MINH TIẾP TUYẾN vd 2

5 tháng 3 2016

câu c là định H hay A 

xem lại coi bn

1 tháng 3 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

 

15 tháng 1 2017

Cách 1:

Ta có: EF = AH ≤ OA (OA có độ dài không đổi)

Do đó EF lớn nhất khi AH = OA

<=> H trùng O hay dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

Cách 2: EF = AH = AD/2.

Do đó EF lớn nhất khi AD lớn nhất. Khi đó, dây AD là đường kính.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

26 tháng 9 2017

Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

4 tháng 4 2017

ΔAHB vuông nên AE.AB = AH2

ΔAHC vuông nên AF.AC = AH2

Suy ra AE.AB = AF.AC

Để học tốt Toán 9 | Giải bài tập Toán 9

 

13 tháng 10 2018

 

Để học tốt Toán 9 | Giải bài tập Toán 9

 

17 tháng 7 2020

O I K A E B H F C D G 1 1 2 2

a)

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

b)

Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\)   nên là hình chứ nhật

c)

c) \(\Delta AHB\) vuông nên AE.AB = AH2

\(\Delta AHC\)vuông nên AF . AC = AH2

Suy ra AE . AB = AF . AC

d) Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)

Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)

\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

e) - Cách 1:

Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )

Do đó EF lớn nhất khi AH = OA

<=> H trùng O hay dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.