Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
\(a,2^n\cdot4=128\\ \Rightarrow2^n=32\\ \Rightarrow n=5\\ b,\Rightarrow\left(2^n+1\right)^3=5^3\\ \Rightarrow2^n+1=5\\ \Rightarrow2^n=4\Rightarrow n=2\\ c,n^{15}=n\\ \Rightarrow n^{15}-n=0\\ \Rightarrow n\left(n^{14}-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}n=0\\n^{14}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
\(a,2^n=16\Leftrightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b,4^n=4096\Rightarrow4^n=4^6\Leftrightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Leftrightarrow n=6\)
\(c,6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Leftrightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Leftrightarrow n=6\)
\(a.\) \(2^n=16\Rightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b.\) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
\(c.\) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Rightarrow n=6\)
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
1) A = 4 + 43 + 45 + ... + 499
=> 42A = 43 + 35 + 47 + .... + 4101
Lấy 42.A trừ A theo vế ta có :
42.A - A = (43 + 35 + 47 + .... + 4101) - (4 + 43 + 35 + 47 + .... + 4101)
16A - A = 4101 - 4
15A = 4101 - 4
A = 4101 - 4
2) Tìm \(n\inℕ\)
15a + 1 = 4n
Ta có : 4n nếu n chẵn thì 4n = ...6
4n nếu n lẻ thì 4n = ...4
Nếu 4n với n chẵn
=> 15a + 1 = ...6
=> 15a = ...5
=> a = ...5 : 15
=> a \(\in\)2k + 1 ; 0 < a < 10 ; ...5\(⋮\)15
Nếu 4n với n lẻ
=>15a + 1 = ...4
=> 15a = ...3
=> a \(\in\varnothing\)