Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d . Theo bài a+b+c+d=11 (1)
Cho a+c−b−d: 11=k (k E Z) (2)
a;b;c;d ≤ 9 => k E {0;1;-1}. Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí !
TH1: k=0 => a+c-(b+d)=11.k. (3)
Công (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 . Lấy (1) trừ đi (3)
2.(b+d)=11.(1-k) => b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
=> có 8 số có 4 chữ số chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.
Ta có: (P - 1).P.(P + 1) chia hết cho 3 ( (P - 1).P.(P + 1) là tích 3 số tự nhiên liên tiếp )
Vì P > 3 nên P không chia hết cho 3 => ( P - 1).(P + 1) chia hết cho 3 (1)
Vì P lớn hơn 3 nên P lẻ => (P - 1).(P + 1) là hai số chẵn liên tiếp.
Đặt P - 1 = 2k => P + 1= 2k + 2 ( k thuộc N* )
Do đó: ( P - 1 ).( P + 1 ) = 2k .(2k + 2) = 2.2.k.(k + 1) = 4.k.(k + 1)
Vì k.(k + 1) chia hết cho 2 ( k.(k + 1) là tích hai số tự nhiên liên tiếp)
Nên: 4.k.(k + 1) chia hết cho 4.2 = 8.
Hay : (P - 1).(P + 1) chia hết cho 8 (2)
Từ (1) và (2) suy ra: (P - 1).(P + 1) chia hết cho 3.8
Mà: (3;8) = 1 nên: (P - 1).(P + 1) chia hết cho 8.3
Hay (P - 1).(P + 1) chia hết cho 24( ĐPCM )
24= 3 nhân 8
3 và 8 nguyên tố cùng nhau
để số bạn cần tìm chia hết cho 24 thì cần chia hết cho 3 và 8
p là snt , p>3 thì p lẻ
xét từng số dư của p thì chắc chắn có 1 trong 2 số trên chia hết cho 3 nên tích chia hết cho 3
p le thi p-1 va p+1 la 2 so trong do 1 so chia het cho 2 con 1 số chia hết cho 4 thì tích 2 số chia hết cho 8
suy ra tích (p-1)(p+1) chia hết cho 24
A. Số lượng số hạng là:
\(\left(2020-5\right):5+1=404\) (số hạng)
Tổng dãy số là:
\(\left(2020+5\right)\cdot404:2=409050\)
b) 6 chia hết cho n + 2
⇒ n + 2 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {-1; -3; 0; -4; 1; -5; 4; -8}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 4}
Ta có:
\(\dfrac{8n+19}{4n+1}=\dfrac{8n+2+17}{4n+1}=\dfrac{2\left(4n+1\right)+17}{4n+1}=2+\dfrac{17}{4n+1}\)
Để bt nguyên thì \(\dfrac{17}{4n+1}\) phải nguyên:
\(\Rightarrow4n+1\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
Mà n phải nguyên nên:
\(\Rightarrow4n+1\in\left\{1;17\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
Vậy: ...
(8n + 19)/(4n + 1) = 2 + 17/(4n+1). Để (8n + 19)/(4n + 1) có giá trị là một số nguyên => 17 chia hết cho 4n + 1
=> 4n + 1 = 17 => n = 4
=> 4n + 1 = 1 => n = 0
(2 số -17; -4 loại vì n ra phân số)
\(\frac{15}{25}=\frac{3}{5}\)
k cho mik nha các bn làm ơn
Ta có: 15/25 = 5.3/5.5 = 3/5
Câu này khó vậy ak