K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x+2017-\left(2015-x\right)}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}}{\dfrac{2000+x-\left(1998-x\right)}{\sqrt{2000+x}+\sqrt{1998-x}}}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{2000+x}+\sqrt{1998-x}}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}\)

\(=\dfrac{\sqrt{1999}+\sqrt{1999}}{\sqrt[3]{2016^2}+\sqrt[3]{2016^2}+\sqrt[3]{2016^2}}=\dfrac{2\sqrt{1999}}{3.24\sqrt[3]{294}}=\dfrac{\sqrt{1999}}{36\sqrt[3]{294}}\)

\(\Rightarrow a+b=1999+294\)

8 tháng 3 2021

undefined

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+2x+1-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-4}{1+1}+\dfrac{12}{1+1+1}=2\)

8 tháng 3 2021

undefined

9 tháng 3 2021

a/ \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x^2-1}-2}{x-3}+\lim\limits_{x\rightarrow3}\dfrac{2-\sqrt[4]{1+5x}}{x-3}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x^2-1-8}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{16-1-5x}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4.\sqrt[3]{1+5x}+8\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{-5\left(x-3\right)}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4\sqrt[3]{1+5x}+8\right)}\)

\(=\dfrac{3+3}{\sqrt[3]{\left(3^2-1\right)^2}+2.\sqrt[3]{3^2-1}+4}-\dfrac{5}{\sqrt[4]{\left(1+5.3\right)^3}+2\sqrt[3]{\left(1+5.3\right)^2}+4.\sqrt[3]{1+5.3}+8}=\dfrac{11}{32}\)

\(\Rightarrow a^2+b^2=1145\)

9 tháng 3 2021

40/ 

\(L=\lim\limits_{x\rightarrow0}\dfrac{af\left(x\right)+b^n-b^n}{f\left(x\right)\left[\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+....+b^{n-1}\right]}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+...+b^{n-1}}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{b^{n-1}+b^{n-1}++...+b^{n-1}}=\dfrac{a}{nb^{n-1}}\)

 

NV
2 tháng 9 2021

Đặt \(cosx-sinx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)+1=0\)

\(\Leftrightarrow t^3-3t-2=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=-1\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=-1\)

\(\Leftrightarrow\sqrt[]{2}cos\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow...\)

2 tháng 9 2021

Dạ em cảm ơn ạ!! ^^

4 tháng 3 2021

Bạn kiểm tra lại đề bài câu a, n=1 thì VT=1, VP=-1, nếu đề bài đúng thì vp phải là \(\dfrac{-\left(1\right)^{n-1}n\left(n+1\right)}{2}\)

\(n=1\Rightarrow VT=1=VP\)

Vậy mệnh đề đúng với n=1

Giả sử mệnh đề cũng đúng với \(n=k\left(k\in N\right)\), hay:

\(1^2-2^2+...+\left(-1\right)^{k-1}.k^2=\dfrac{\left(-1\right)^{k-1}.k.\left(k+1\right)}{2}\)

Ta cần chứng minh mệnh đề cũng đúng với \(n=k+1\) ,hay:

\(1^2-2^2+...+\left(-1\right)^{k-1}.k^2+\left(-1\right)^k.\left(k+1\right)^2=\dfrac{\left(-1\right)^k.\left(k+1\right)\left(k+2\right)}{2}\)

That vay:

\(VT=\dfrac{\left(-1\right)^{k-1}k\left(k+1\right)}{2}+\left(-1\right)^k.\left(k+1\right)^2=\dfrac{\left(-1\right)^{k-1}.k.\left(k+1\right)+2\left(-1\right)^k\left(k+1\right)^2}{2}\)

\(=\dfrac{\left(-1\right)^k\left(k+1\right)\left(-k+2k+2\right)}{2}=\dfrac{\left(-1\right)^k\left(k+1\right)\left(k+2\right)}{2}=VP\)

Vậy mệnh đề đúng với \(\forall n\in N\)

b/ \(n=7\Rightarrow VT=3^7=2187< 7!=5040\)

Vậy mệnh đề đúng với n=7

Giả sử mệnh đề đúng với \(n=k\left(k\in N;k\ge7\right)\),hay:

\(3^k\le k!\)

Ta cần chứng minh mệnh đề cũng đúng với \(n=k+1\) ,hay:

\(3^{k+1}\le\left(k+1\right)!\)

That vay:

\(3^k.3\le\left(k+1\right).k!\)

\(k>6\Rightarrow k+1>6\Rightarrow k+1>3\)

Ma \(3^k\le k!\)

\(\Rightarrow3^k.3\le\left(k+1\right).k!\Leftrightarrow3^{k+1}\le\left(k+1\right)!\)

Vậy mệnh đề đúng với \(\forall n\in N;n>6\)

17 tháng 8 2021

sinx - sin3x - \(\sqrt{3}\left(cosx+sin3x\right)=0\)

⇔ sinx - \(\sqrt{3}cosx-\left(1+\sqrt{3}\right)sin3x\) = 0

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)-\left(1-\sqrt{3}\right)sin\left(\pi-3x\right)\) = 0

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin\left(3x-\pi\right)=0\)

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin3\left(x-\dfrac{\pi}{3}\right)=0\)

Đặt a = x - \(\dfrac{\pi}{3}\) ta có phương trình mới

2sina + (1 - \(\sqrt{3}\))sin3a = 0 (1)

Sử dụng công thức sin3a = 3sina - 4sin3a đưa (1) về phương trình bậc 3 ẩn là a. Từ a suy ra x

NV
14 tháng 4 2022

21.

Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)

Khi đó:

\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx+2\right)}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=\dfrac{-b}{2}\)

\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)

\(\Rightarrow a+b=1-8=-7\)

22.

B sai, do các cạnh bên của chóp đều tạo với đáy các góc bằng nhau