Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
3:
a: Xét ΔOAB có
OH vừa là đường cao, là phân giác
Do đó: ΔOAB cân tại O
b: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét ΔCAB có
CH vừa là đường cao, vừa là trung tuyến
Do đó: ΔCAB cân tại C
c: OE+EA=OA
OD+DB=OB
mà OE=OD và OA=OB
nên EA=DB
Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
Do đó: ΔOAC=ΔOBC
=>góc OAC=góc OBC
=>góc DBC=góc EAC
Xét ΔDBC và ΔEAC có
góc CDB=góc CEA
DB=EA
góc CBD=góc CAE
Do đó: ΔDBC=ΔEAC
=>góc ECA=góc DCB
=>góc ECA+góc BCA=180 độ
=>B,C,E thẳng hàng
\(=4\)
Cái này thì bạn rút gọn x - 1 thì còn \(\dfrac{-12}{-3}\)
Sau đó rút gọn -12 và -3 thì chỉ còn 4 thôi
=>(x-1)2 = -12 . (-3)
(x-1)2 = 36
(x-1)2 = 62 = (-6)2
*) x-1=6 *) x-1=-6
x=7 x=-5
=>x thuộc (7,-5)
1)
a. Xét tg ABC cân tại A có AC=AB; gACB = g ABC.
Xét tg ACN và tg ABM có:
CN=BM (gt)
AC=AB
gACB=gABC
=> tg ACN = tg ABM (cgc)
=> AN=AM (2 cạnh tg ứng)
H là trung điểm BC nên AH là đường trung tuyến của tg ABC
Mak tg ABC cân => H cũng là đường cao của tg ABC => AH ⊥ BC
b. Vì H là trung đ của BC nên CH=HB=BC/2= 3cm
Áp dụng định lý Py ta go vào tg AHB có:
AB^2=AH^2+HB^2
AH^2= AB^2 - HB^2
AH^2= 5^2 - 3^2 = 16 cm
=> AH= 4 cm
c. Xét tg AMN và tg KMB có:
AM=KM (gt)
MN=BM (gt)
gHMA=gKMB (đối đỉnh)
=> tg AMN = tg KMB (cgc)
d. tg AMN = tg KMB => gMAN=gMKB
=> AN=KB=Am
Mà AB>AM (quan hệ giữ đường xiêng và hình chiếu) nên AB>BK
=> gBKA> gBAK
=> gMAN>gBAM
=)) Mik chịu á, bạn cứ làm mấy chỗ khác trước và chừa chứng minh cho mik cx đc ạ
a) Vì \(\left|2x+4\right|\ge0;\left|y\right|\ge0\)
mà \(\left|2x+4\right|+\left|y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x+4\right|=0\\\left|y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-2;0\right)\)