Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật
a: E đối xứng M qua AB
nên AB là trung trực của ME
=>AB vuông góc với ME tại trung điểm của ME
=>AB là phân giác của góc EAM(1)
E đối xứng N qua AC
nên AC là trung trực của NE
=>AC vuông góc với NE tại trung điểm của NE
=>AC là phân giác của góc EAN(2)
Xét tứ giác AIEK có
góc AIE=góc AKE=góc KAI=90 độ
nên AIEK làhình chữ nhật
b: Từ (1), (2) suy ra góc NAM=2*90=180 độ
=>N,A,M thẳng hàng
mà AM=AN
nên A là trung điểm của MN