K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2022

Do \(a;b;c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\\c-1\le0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(P=a+b+c-ab-bc-ca\)

\(=\left(a+b+c-ab-bc-ca+abc-1\right)+1-abc\)

\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\)

\(\le1-abc\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\) và các hoán vị

NV
10 tháng 4 2021

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)

Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị

12 tháng 8 2017

1) \(P=\left(a+2b+3c\right)\left(6a+3b+2c\right)\)

\(P=\left[a+2b+3\left(1-a-b\right)\right]+\left[6a+3b+2\left(1-a-b\right)\right]=\left(3-2a-b\right)\left(2+4a+b\right)=2\left(3a-2b-b\right)\left(1+2a+\dfrac{b}{2}\right)\)

Lợi dụng AM-GM, ta có:

\(P\le2\left(\dfrac{3-2a-b+1+2a+\dfrac{b}{2}}{2}\right)^2=2.\left(\dfrac{4-\dfrac{b}{2}}{2}\right)^2=8\)

MaxP=8 khi \(a=c=\dfrac{1}{2};b=0\)

13 tháng 8 2017

2) Sử dụng AM-GM tìm được Max=80 khi b=0;a=2c=2

20 tháng 8 2020

Chắc áp dụng được Cauchy-Schwarz

24 tháng 11 2020

Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)

Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

16 tháng 1 2021

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)