Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
1.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
<=> \(pq\left(x+y\right)=xy\)
Đặt: \(x=ta;y=tb\) với (a; b)=1
Ta có: \(pq.\left(a+b\right)=tab\)
<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)
vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)
(1); (2) => \(t⋮a+b\)
=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)
TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)
+) Khả năng 1: b=1
(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)
+) Khả năng 2: b=p
(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)
=> \(x=at=q+pq;\)
\(y=at=pq+p^2q\)(tm)
+) Khả năng 3: b=q
tương tự như trên
(1) => \(t=p\left(1+q\right)=p+pq\)
=> \(x=at=p+pq\)
\(y=bt=q\left(p+pq\right)=pq+pq^2\)
+) Khả năng 4: \(b=pq\)
(1) =>\(t=1+pq\)
=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\)
TH2: \(a=p\)
=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)
+) KN1: \(b=1\)
Em làm tiếp nhé! Khá là dài
2. \(x^4+4=p.y^4\)
+) Với x chẵn
Đặt x=2m ( m thuộc Z)
=> \(16m^2+4=py^4\)
=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z
Khi đó ta có:
\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)
=> X chẵn loại
+) Với x lẻ
pt <=> \(x^4+4=py^4\)
<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)
Gọi \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)
=> \(x^2+2x+2⋮d\)
\(x^2-2x+2⋮d\)
=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)
Vì x lẻ => d lẻ
=> \(x⋮d\)
=> \(2⋮d\Rightarrow d=1\)
Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)
Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:
\(x^2+2x+2=pa^2;\)
\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)
<=> x=b=1 hoặc x=1; b=-1
Với x=1 => a^2.p=5 => p=5
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Phương trình <=> x4+x2+1/4 + y2+y+1/4 + 10-2/4=0
<=> (x2+1/2)2+(y+1/2)2 + 19/2 =0
Ta nhận thấy: vế trái là 3 số dương, nên tổng của chúng >0 với mọi x,y.
Đs: không có giá trị của x, y thỏa mãn
Lời giải:
$3x^2+4y^2+12x+3y+5=0$
$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$
$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$
$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$
$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$
$\Rightarrow -2< x+2< 2$
$\Rightarrow -4< x< 0$
$\Rightarrow x\in \left\{-3; -2; -1\right\}$
Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.
\(xy-2x-3y+1=0\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(xy-3y=2x-1\)
\(\Leftrightarrow\) \(\left(x-3\right)y=2x-1\)
\(\Leftrightarrow\) \(y=\frac{2x-1}{x-3}\)
\(\Leftrightarrow\) \(y=\frac{2x-6+5}{x-3}\)
\(\Leftrightarrow\) \(y=2+\frac{5}{x-3}\)
Vì \(y\in Z\) (theo giả thiết) nên \(\frac{5}{x-3}\) phải là số nguyên hay \(5\) phải chia hết cho \(x-3\)
\(\Leftrightarrow\) \(x-3\in\left\{-5;-1;1;5\right\}\)
Khi đó, xét \(x-3\) với \(4\) trường hợp trên, ta có:
\(\text{+) }\) Với \(x-3=-5\) thì \(x=-2\) \(\Rightarrow\) \(y=1\)
\(\text{+) }\) Với \(x-3=-1\) thì \(x=2\) \(\Rightarrow\) \(y=-3\)
\(\text{+) }\) Với \(x-3=1\) thì \(x=4\) \(\Rightarrow\) \(y=7\)
\(\text{+) }\) Với \(x-3=5\) thì \(x=8\) \(\Rightarrow\) \(y=3\)
Vây, nghiệm nguyên của phương trình \(\left(\text{*}\right)\) là \(\left(x;y\right)=\left\{\left(-2;1\right),\left(2;-3\right),\left(4;7\right),\left(8;3\right)\right\}\)