Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).
Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(\Rightarrow xy+yz+zx=-1\).
Bất đẳng thức đã cho tương đương:
\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).
Vậy ta có đpcm
mình xí câu 45,47,51 :>
45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b
b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)
\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)
\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)
Cộng (1),(2),(3) theo vế ta có đpcm
Đẳng thức xảy ra <=> a=b=c
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b,c: góc FAE+góc FHE=180 độ
=>FAEH nội tiếp
=>góc HFE=góc HAE=góc C
Xét ΔHFE vuông tại H và ΔHCA vuông tại H có
góc HFE=góc HCA
=>ΔHFE đồng dạng với ΔHCA
=>HF/HC=HE/HA
=>HF*HA=HC*HE
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
Câu 1:
\(ĐK:x-2023\ne0\Leftrightarrow x\ne2023\)
Câu 2:
\(ĐK:x^2-9\ne0\Leftrightarrow x^2\ne9\Leftrightarrow x\ne\pm3\)
Câu 3:
Phân thức đổi của phân thức `(-2y)/(5x^3)` là: `(2y)/(5x^3)`
Câu 4:
\(\dfrac{1-x^2}{x\left(1-x\right)}=\dfrac{1^2-x^2}{x\left(1-x\right)}=\dfrac{\left(1-x\right)\left(1+x\right)}{x\left(1+x\right)}=\dfrac{1-x}{x}\left(x\ne0;x\ne1\right)\)
Câu 5:
ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-1\end{matrix}\right.\)
Câu 6:
\(\dfrac{x^2+y^2}{x-y}+\dfrac{-2xy}{x-y}=\dfrac{x^2-2xy+y^2}{x-y}=\dfrac{\left(x-y\right)^2}{x-y}=x-y\left(x\ne y\right)\)
Câu 7:
MTC là: \(5\left(x-3\right)\left(x+3\right)\)
Câu 8:
\(\dfrac{2020^3-1}{2020^2+2021}=\dfrac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)
Câu 9:
\(\Delta ABC\sim\Delta PNM\)
Câu 10:
Tỉ số đồng dạng:
\(\dfrac{A'B'}{AB}=\dfrac{1}{2}\)
Câu 11:
Cần thêm đk: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}\)
Câu 12:
AD là tia phân giác của góc A ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{\sqrt{BC^2-AB^2}}=\dfrac{8}{\sqrt{10^2-8^2}}=\dfrac{8}{6}=\dfrac{4}{3}\)