Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABM và tam giác ECM
^AMB = ^EMC ( đối đỉnh )
BM = MC ( gt )
AM = ME ( gt )
Vậy tam giác ABM = tam giác ECM ( c.g.c )
b, Vì tam giác ABM = tam giác ECM ( cma )
=> AB = EC
c, Vì tam giác ABM = tam giác ECM ( cma )
=> ^ABM = ^ECM
mà 2 góc này ở vị trí so le trong => AB // CE
Bài 6:
a: Đặt 2x+3=0
=>2x=-3
hay x=-3/2
b: Đặt (x+1)(x-2)=0
=>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
c: Đặt 2x2+4x=0
=>2x(x+2)=0
=>x=0 hoặc x=-2
1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5
Bậc là 8
Phần biến là x^3;y^5
Hệ số là -2
2:
a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6
=3x^4-2x^3+4x^2+3x-6
Q(x)=2x^4+4x^2-2x^3+x^4+3
=3x^4-2x^3+4x^2+3
b: A(x)=P(x)-Q(x)
=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3
=3x-9
A(x)=0
=>3x-9=0
=>x=3
\(A=2x^3+6x^2-3x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}^3+6\cdot\dfrac{1}{3}^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
=13/54
=>(2x-1)^2=24^2
=>2x-1=24 hoặc 2x-1=-24
=>x=-23/2 hoặc x=25/2
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
AB<AC
Do đó: HB<HC
c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD(gt)
Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔCBD có CB=CD(cmt)
nên ΔCBD cân tại C(Định nghĩa tam giác cân)
Bài 2 :
Bài 2 :
a, \(A=6x^3y^6z\)hệ số 6 ; biến x^3y^6z ; bậc 10
b, \(B=-\dfrac{2}{3}xy^2\left(9x^4y^2\right)=-6x^5y^4\)
hệ số -6 ; biến x^5y^4 ; bậc 9
Bài 3 :
\(A=3,5xy^2\) ta có \(x=\left|-2\right|=2;y=-1\)
Thay vào ta đc
A = 3,5 . 2 . 1 = 7
Này là đủ r đk bạn