Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)
\(\Rightarrow AB=\dfrac{2S_{ABC}}{AC.sinA}=\dfrac{10\sqrt{3}}{3}\)
Áp dụng định lý hàm cos:
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=5,89\)
\(\Rightarrow AH=\dfrac{2S}{BC}=6,79\)
2: ta có: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}=\overrightarrow{AE}+\overrightarrow{CB}+\overrightarrow{FD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FE}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{FD}+\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FA}=\overrightarrow{CB}+\overrightarrow{FC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{FC}-\overrightarrow{FA}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{AC}\)(đúng)
a: Để A là tập con của B thì 2m+1<5
=>m<2
b: Để B là tập con của A thì 2m+1>5
=>m>2
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 2\\x>\dfrac{9}{2}\end{matrix}\right.\\-\dfrac{1}{3}< x< 7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}< x< 2\\\dfrac{9}{2}< x< 7\end{matrix}\right.\)
Hay \(S=\left(-\dfrac{1}{3};2\right);\left(\dfrac{9}{2};7\right)\)
d.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-\dfrac{11}{5}\\x\ge7\end{matrix}\right.\\-\dfrac{1}{2}< x< 3\end{matrix}\right.\) \(\Rightarrow x\in\varnothing\) hay BPT vô nghiệm
a: \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5;-4\right)\\\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(-1;-5\right)\end{matrix}\right.\)
Vì -5:(-1)<>(-4):(-5) nên A,B,C không thẳng hàng
hay ΔABC nhọn