Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(=\sqrt{2.\left(n+1\right).n:2-n}\)
\(=\sqrt{n\left(n+1\right)-n}\)
\(=\sqrt{n^2+n-n}\)
\(=\sqrt{n^2}\)
\(=n\)
\(n\left(n^2+1\right)\left(n^2+4\right)\)
\(=n\left(n^2-4+5\right)\left(n^2-1+5\right)\)
\(=n\left[\left(n-2\right)\left(n+2\right)+5\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\left[n\left(n-2\right)\left(n+2\right)+5n\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(+5n^2\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Vì ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) là tích 5 số nguyên liên tiếp
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 5
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) + 5n^2( n - 2 )( n - 1 )( n + 1 )( n + 2 ) chia hết cho 5
\(\Rightarrow n\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
Vì n là số lẻ n=2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\)