Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{32\cdot2^4}{2^2\cdot\frac{1}{16}}\)
\(=\frac{2^5\cdot2^4}{\frac{4}{16}}\)
\(=\frac{2^9}{\frac{1}{4}}\)
\(=2^9\cdot4\)
\(=2^9\cdot2^2\)
\(=2^{11}\)
a: \(2^6\cdot3^3=\left(2^2\cdot3\right)^3=12^3\)
b: \(6^4\cdot8^3=2^4\cdot3^4\cdot2^9=2^{13}\cdot3^4\)
c: \(16\cdot81=36^2\)
d: \(25^4\cdot2^8=100^4\)
c) \(\left(\dfrac{5}{4}\right)^4:\left(\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}:\dfrac{15}{2}\right)^4=\left(\dfrac{1}{6}\right)^4\)
d) \(10^4:16=10^4:2^4=\left(10:2\right)^4=5^4\)
e) \(\left(-2\right)^3.125=\left(-2\right)^3.5^3=\left(-2.5\right)^3=-10^3\)
f) \(64^3:\left(-2\right)^9=64^3:\left(-8\right)^3=\left(64:-8\right)^3=-8^3\)
a: \(1=4^0\)
\(4=4^1\)
\(16=4^2\)
\(256=4^4\)
b: \(\dfrac{1}{4}=4^{-1}\)
\(\dfrac{1}{64}=4^{-3}\)
\(\dfrac{1}{256}=4^{-4}\)
\(\dfrac{1}{16}=4^{-2}\)
\(\dfrac{1}{1024}=4^{-5}\)
\(\begin{array}{l}a){15^8}{.2^4} = {15^{2.4}}{.2^4} = {({15^2})^4}{.2^4}\\ = {225^4}{.2^4} = {(225.2)^4} = {450^4}\\b){27^5}:{32^3} = {({3^3})^5}:{({2^5})^3}\\ = {3^{3.5}}:{2^{5.3}} = {3^{15}}:{2^{15}} = {\left( {\frac{3}{2}} \right)^{15}}\end{array}\)
a) \(15^8\cdot2^4=3^8\cdot5^8\cdot2^4=9^4\cdot25^4\cdot2^4=\left(9\cdot25\cdot2\right)^4=450^4\)
b) \(27^5:32^3=\left(3^3\right)^5:\left(2^5\right)^3=3^{15}:2^{15}=\left(\dfrac{3}{2}\right)^{15}\)
A) \(\left(\frac{1}{3}\right)^{^2}.\frac{1}{3}.9^2=3=3^1\)(viết dưới dạng lũy thừa)
B)\(8< 2^n< 2.16\)
\(2^3< 2^n< 2.2^4\)
\(2^3< 2^n< 2^5\)
\(\Rightarrow3< n< 5\)
mà n là số tự nhiên => n = 4
C) |-x| = 1 => |x| = 1 => x = -1 hoặc x = 1.
|2x| = 6.7 + (-3,3) - 0.4 = 42 - 3,3 - 0 = 42 - 3,3 = 38,7
=> 2x = 38,7 hoặc 2x = -38,7
=> x = 19,35 hoặc x = -19,35
a) \(64^2\cdot32^4=2^{16}\cdot2^{20}=2^{36}\)
b) \(11^{16}\cdot5^{24}=\left(11^4\right)^4\cdot\left(5^6\right)^4=\left(11^4\cdot5^6\right)^4\)
a)642.324=(26)2.(25)4=212.220=232
b)1116.524(ko phân tích đc nữa)