K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

dấu căn kia dài đến đâu vậy

10 tháng 6 2016

có phải đề biểu thức như thế naỳ : \(6\sqrt{x}-x-1\)

Điều kiện : x>=0 

Ta có : \(6\sqrt{x}-x-1=-\left(x-6\sqrt{x}+1\right)=-\left(\sqrt{x^2}-6\sqrt{x}+9-8\right)\)

                                        = \(-\left(\sqrt{x}-3\right)^2+8\le8\)( do \(-\left(\sqrt{x}-3\right)^2\le0\)với mọi x>= 0 )

Vậy giá trị lớn nhất của biểu thức đã cho là 8 khi x = 9 

11 tháng 12 2021

PT giao Ox và Oy: 

\(y=0\Leftrightarrow x=\dfrac{2m+1}{m+3}\Leftrightarrow A\left(\dfrac{2m+1}{m+3};0\right)\Leftrightarrow OA=\left|\dfrac{2m+1}{m+3}\right|\\ x=0\Leftrightarrow y=-2m-1\Leftrightarrow B\left(0;-2m-1\right)\Leftrightarrow OB=\left|2m+1\right|\)

Gọi H là chân đường cao từ O tới (d)

Đặt \(OH^2=t\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{t}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(m+3\right)^2}{\left(2m+1\right)^2}+\dfrac{1}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2+6m+10}{4m^2+4m+1}\\ \Leftrightarrow tm^2+6mt+10t=4m^2+4m+1\\ \Leftrightarrow m^2\left(t-4\right)+2m\left(3t-2\right)+10t-1=0\)

Vì PT bậc 2 ẩn m này có nghiệm nên \(\Delta'\ge0\)

\(\Leftrightarrow\left(3t-2\right)^2-\left(10t-1\right)\left(t-4\right)\ge0\\ \Leftrightarrow9t^2-12t+4-10t^2+41t-4\ge0\\ \Leftrightarrow-t^2+29t\ge0\\ \Leftrightarrow0\le t\le29\)

Do đó \(0\le OH\le\sqrt{29}\)

Dấu \("="\Leftrightarrow\dfrac{4m^2+4m+1}{m^2+6m+10}=29\Leftrightarrow25m^2+170m+289=0\)

\(\Leftrightarrow\left(5m+17\right)^2=0\Leftrightarrow m=-\dfrac{17}{5}\)

Vậy \(OH_{max}=\sqrt{29}\Leftrightarrow m=-\dfrac{17}{5}\)

11 tháng 12 2021

cảm ơn nhiều mà nhìn bài dài quá 

 

1 tháng 10 2018

TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA CÁC BIỂU THỨC SAU ( NẾU CÓ) :
A=X+1X+1
B=3(X1)+73(X−1)+7
C=4X234X−2−3
D=2017x+1−2017x+1
E=x+1x+2x+1x+2
F=x+2x5x+2x−5
G=1x24x+5

1 tháng 10 2018
F=x+2x5x+2x−5 = (x2x+1)6=(x1)26(x−2x+1)−6=(x−1)2−6
=> Min F=-6 khi x=1
G=1x24x+51x2−4x+5 
Dự đoán là Min G=1 khi x=2 (cách làm k chắc là đúng nên k ghi vào )  
10 tháng 7 2017

\(A=\frac{1}{x-\sqrt{x}+1}=\frac{1}{x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}+\frac{3}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow A=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{4}{3}\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

16 tháng 6 2019

một hình chữ nhật có chiều rộng là 1/3 mét, chiều dài gấp 5 lần chiều rộng. Tính chu vi và diện tích hình chữ nhật đó.

16 tháng 6 2019

\(\frac{x^2-\sqrt{2}}{x^4+x^2\sqrt{3}-x^2\sqrt{2}-\sqrt{6}}\)

\(=\frac{x^2-\sqrt{2}}{x^2\left(x^2-\sqrt{2}\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)

\(=\frac{x^2-\sqrt{2}}{\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{3}\right)}\)

\(=\frac{1}{x^2+\sqrt{3}}\)

Vì \(x^2+\sqrt{3}\ge\sqrt{3}\)với \(\forall x\)\(\Rightarrow\frac{1}{x^2+\sqrt{3}}\le\frac{1}{\sqrt{3}}\)\(\Leftrightarrow x=0\)

\(\Rightarrow\)Giá trị lớn nhất của biểu thức là \(\frac{1}{\sqrt{3}}\Leftrightarrow x=0\)

15 tháng 9 2021

\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

\(maxB=5\Leftrightarrow x=2\)

15 tháng 9 2021

MinA=0

⇔x=1 hoặc x=-3 hoặc x=-2 hặc x=-6

B\(=-x^2+2x+1+2x\)

\(=-\left(x^2-2x+1\right)+2\left(1+x\right)\)

\(=-\left(x-1\right)^2-2\left(x-1\right)\)

 

1 tháng 7 2021

Đk: \(2\le x\le4\)

Áp dụng BĐT bunhiacopxki có:

\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)

\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)

Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)

Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)

Dấu "=" xảy ra khi x=4 (tm)

1 tháng 7 2021

cảm ơn bạn nhé :D

18 tháng 5 2018

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)

Đặt T = a

<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)

<=> \(9+6x-2x^2=3xa-x^2a\)

<=> \(2x^2-6x-9=x^2a-3xa\)

<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)

Phương trình trên có nghiệm 

<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)

<=> \(36-36a+9a^2+72-36a\ge0\)

<=> \(9a^2-72a+108\ge0\)

<=> \(\left(a-6\right)\left(a-2\right)\ge0\)

<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)

Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)

và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x ) 

11 tháng 3 2020

ĐK: \(x\ge0\)

+) Với x = 0 => A = 0

+) Với x khác 0

Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)

=> \(A\le\frac{4}{3}\)

Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1

Vậy max A = 4/3 tại x = 1

Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN