Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng bất đẳng thức AM-GM ta có:
\(\hept{\begin{cases}a^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{a^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}a\\b^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{b^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}b\\c^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{c^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}c\end{cases}}\)
_________________________________________________________________________________________
\(\Rightarrow\left(a^n+b^n+c^n\right)\ge n\left(\frac{a+b+c}{3}\right)^{n-1}\left(a+b+c\right)-3\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\)\(=3\left(\frac{a+b+c}{3}\right)^n\)
Câu 50 thì bạn nhóm cặp lại tan1*tan89*tan2*tan88*...*tan45
thì bạn sẽ thấy là tan1*tan89=tan2*tan88=...=tan45=1
=>D
Câu 51 thì bạn nhóm cặp lại \(sin^288^0;sin^22^0\); sin2860 và sin240;...;sin244 độ và sin2 46 độ thì bạn sẽ thấy từng cặp đó có tổng bằng 1
Và có 22 cặp như vậy nên đáp án là C
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A