Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)
\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8cm\)
Xét tg vuông AHB có
\(HA=\sqrt{AB^2-HB^2}\) (Pitago)
\(\Rightarrow HA=\sqrt{3^2-1,8^2}=2,4cm\)
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
2/
Xét tg vuông AHC và tg vuông DHC có
HC chung
HA=HD (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi dây cung)
=> tg AQHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông tương ứng bằng nhau) => AC=DC
Xét tg ABC và tg DBC có
AC=DC (cmt)
BC chung
BA=BD (bán kính (B))
=> tg ABC = tg DBC (c.c.c) \(\Rightarrow\widehat{BAC}=\widehat{BDC}=90^o\)
=> A và D cùng nhìn BC dưới hai góc bằng nhau \(=90^o\) => A và D cùng nằm trên đường tròn đường kính BC hay A; B; C; D cùng nằm trên 1 đường tròn
3/
\(\widehat{EAD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow DA\perp EF\) (1)
\(BF\perp DE\) (gt) (2)
Từ (1) và (2) => I là trực tâm của tg DEF
\(\Rightarrow EK\perp DF\) (trong tg 3 đường cao đồng quy tại 1 điểm)
Gọi K' là giao của DF với (B) \(\Rightarrow\widehat{EK'F}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EK'\perp DF\)
Như vậy từ E có 2 đường thẳng cùng vuông góc với DF => vô lý (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => K trùng K' => K thuộc đường tròn (B)
Xét tg ABK có
BA=BK (bán kính (B)) => tg ABK cân tại B \(\Rightarrow\widehat{BAK}=\widehat{BKA}\) (góc ở đáy tg cân)