K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Hỏi đáp Toán

a) Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\CK\perp AM\end{matrix}\right.\Rightarrow BH\) // CK

b) Xét \(\Delta BHM\) vuông tại H và \(\Delta CKM\) vuông tại K có:

BM = CM (suy từ gt)

\(\widehat{BMH}=\widehat{CMK}\left(đ^2\right)\)

\(\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\)

\(\Rightarrow HM=KM\)

\(\RightarrowĐPCM.\)

c) Xét \(\Delta CHM;\Delta BKM:\)

BM = CM

\(\widehat{CMH}=\widehat{BMK}\left(đđ\right)\)

HM = KM (câu b)

=> ...

=> \(\widehat{CHM}=\widehat{BKM}\)

mà 2 góc ở vị trí so le trog nên HC // BK.

5 tháng 4 2017

A B C P K H M I a,Xét tam giác ABM=ACM có

góc B = góc C (gt)

BM=MC(gt)

AB=AC(gt)

Vậy tam giác ABM = ACM (C-G-C)

Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân

=)góc HMB=góc KMC

b, Xét tam giác HBM và KCM có:

BM=MC(gt)

góc HMB=góc KMC

Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)

=)BH = CK (2 cạnh tưng ứng)

c,

\(\widehat{ABM}=\widehat{ACM}\)

\(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)

\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)

Vậy tam giác IBM cân tại I.

5 tháng 4 2017

Like cho bạn với nha !!!!

27 tháng 2 2018

a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có

              BM = MC ( M là t/điểm của BC)

             góc cmk = góc bmh ( đối đỉnh)

          => t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )

     => góc H = góc K mà chúng ở vị trí slt => BH // KC

                => BH = CK ( 2 cạnh tuowg ứng)

b) tương tự câu a

27 tháng 2 2018

Bạn lam hôn tớ câu b c d

a: BH⊥AM

CK⊥AM

Do đó: BH//CK

b: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có 

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đó: ΔHMB=ΔKMC

Suy ra: MH=MK

hay M là trung điểm của HK

c: Xét tứ giác BHCK có 

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

Suy ra: HC//BK

12 tháng 1 2018

Xàm lol.Người khác cần you k ak?Hay you cần bài làm?

24 tháng 1 2018

hihi dễ quá ko thèm làm luôn hihihi