Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\CK\perp AM\end{matrix}\right.\Rightarrow BH\) // CK
b) Xét \(\Delta BHM\) vuông tại H và \(\Delta CKM\) vuông tại K có:
BM = CM (suy từ gt)
\(\widehat{BMH}=\widehat{CMK}\left(đ^2\right)\)
\(\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\)
\(\Rightarrow HM=KM\)
\(\RightarrowĐPCM.\)
c) Xét \(\Delta CHM;\Delta BKM:\)
BM = CM
\(\widehat{CMH}=\widehat{BMK}\left(đđ\right)\)
HM = KM (câu b)
=> ...
=> \(\widehat{CHM}=\widehat{BKM}\)
mà 2 góc ở vị trí so le trog nên HC // BK.
a,Xét tam giác ABM=ACM có
góc B = góc C (gt)
BM=MC(gt)
AB=AC(gt)
Vậy tam giác ABM = ACM (C-G-C)
Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân
=)góc HMB=góc KMC
b, Xét tam giác HBM và KCM có:
BM=MC(gt)
góc HMB=góc KMC
Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)
=)BH = CK (2 cạnh tưng ứng)
c,
\(\widehat{ABM}=\widehat{ACM}\)
Mà \(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)
\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)
Vậy tam giác IBM cân tại I.
a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có
BM = MC ( M là t/điểm của BC)
góc cmk = góc bmh ( đối đỉnh)
=> t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )
=> góc H = góc K mà chúng ở vị trí slt => BH // KC
=> BH = CK ( 2 cạnh tuowg ứng)
b) tương tự câu a
a: BH⊥AM
CK⊥AM
Do đó: BH//CK
b: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đó: ΔHMB=ΔKMC
Suy ra: MH=MK
hay M là trung điểm của HK
c: Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
Suy ra: HC//BK