K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

Xét tam giác ABC có M; N; P lần lượt là trung đểm  của AB; AC;  BC nên NP; MP là  đường trung bình của tam giác.

Suy ra:  NP// AB; MP// AC

 Do đó,  AMPN là hình bình hành.

Theo quy tắc hình bình hành ta có  A M →   +   A N →     -   A P →   =   0 →

Đáp án C

Chọn A

1 tháng 9 2021

a)các vectow cùng phương với AM LÀ: MA ;MB;BM;BA;AB;PN;NP

b)các vectow cùng hướng  MN là:BP;PC;BC

c)các vectow ngược hướng với BC là:CP;CP;NM

22 tháng 12 2017

Do M  và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB.

Đáp án B

Tọa độ G là;

\(\left\{{}\begin{matrix}x=\dfrac{4+2+0}{3}=2\\y=\dfrac{0-4-2}{3}=-2\end{matrix}\right.\)

Tọa độ M là:

x=(2+0)/2=1 và y=(-4-2)/2=-3

Tọa độ N là:

x=(4+0)/2=2 và y=(0-2)/2=-1

Tọa độ P là;

x=(4+2)/2=3 và y=(0-4)/2=-2

Tọa độ trọng tâm của tam giác MNP là:

\(\left\{{}\begin{matrix}x=\dfrac{1+2+3}{3}=2\\y=\dfrac{-3-1-2}{3}=-2\end{matrix}\right.\)

=>Tam giác ABC và tam giác MNP có chung trọng tâm

Chọn A

Câu 1: 

Gọi M là trung điểm của AC

AM=AC/2=2

\(BM=\sqrt{3^2+2^2}=\sqrt{13}\)

\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\cdot BM=2\sqrt{13}\)

Câu 6:

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EF}+\overrightarrow{FA}\)

\(=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

3 tháng 2 2021

Giả sử \(B\left(x;y\right)\).Do \(M\left(2;0\right)\) là trung điểm \(BC\Rightarrow C\left(4-x;-y\right)\).

Do \(N\left(2;3\right)\) là trung điểm \(CA\) \(\Rightarrow A\left(x;6+y\right)\)

Do \(P\left(-1;3\right)\) là trung điểm \(AB\Rightarrow\left\{{}\begin{matrix}x+x=2.\left(-1\right)\\6+y+y=2.3\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x=-2\\2y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\\ \Rightarrow B\left(-1;0\right);A\left(-1;6\right);C\left(5;0\right)\).