K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

Khi \(x\in\left[-3;0\right]\) thì \(f\left(x\right)\in\left[-4;5\right]\) (dùng BBT)

Lại có:

\(y=f\left(f\left(x\right)\right)=f^2\left(x\right)+6f\left(x\right)+5\) 

Khi \(f\left(x\right)\in\left[-4;5\right]\) thì \(f\left(f\left(x\right)\right)\in\left[-4;60\right]\) (dùng BBT)

Do đó, \(m=-4\Leftrightarrow f\left(x\right)=-3\Leftrightarrow x=-2\)

và \(M=60\Leftrightarrow f\left(x\right)=5\Leftrightarrow x=0\)

\(\Rightarrow S=m+M=-4+60=56\)

19 tháng 12 2020

\(\left[1;-4\right]??\)

NV
2 tháng 1 2022

Xét trên \(\left[-1;2\right]\Rightarrow y=x^2-2x-8\) có \(-\dfrac{b}{2a}=1\)

\(y\left(-1\right)=-5;y\left(1\right)=-9;y\left(2\right)=-8\)

Xét trên \((2;4]\Rightarrow y=2x-12\)

\(y\left(4\right)=-4\)

So sánh các giá trị trên, ta được \(M=-4;m=-9\)

\(\Rightarrow M+m=-13\)

5 tháng 1 2022

Cho em hỏi tại sao khi xét (2;4] lại ko lấy số khác mà lại lấy số 4 v ạ?
 

3 tháng 11 2023

A là đáp án đúng!

loading...  loading...  

9 tháng 11 2023

Mấy cái bước suy ra ≥;≤ là có công thức hay là định lý gì không ạ ?

7 tháng 2 2019

Đáp án A

NV
22 tháng 12 2020

\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)

Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)

\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)

\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)

Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)

Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)