K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 12 2022

Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)

\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)

Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)

\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)

\(\Rightarrow x=\left\{7;8;9\right\}\)

TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn

TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10

Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10

Do đó số số trong trường hợp này là: \(4!\) số

TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)

Trường hợp này cũng có \(4!\)  số

Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)

NV
20 tháng 12 2022

Số phần tử của S là: \(8!\)

Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)

Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)

\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)

Vậy đề bài sai

n(S)=6!

Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12

=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)

=>Có 3*3!*3!

=>P=3/20

NV
8 tháng 12 2021

Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)

Mặt khác \(a+b+c=d+e+f-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)

\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)

Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)

Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)

16 tháng 9 2018

Đáp án A.

Gọi số cần tìm có dạng a b c d  vì chia hết cho 6

⇒ d = { 2 , 4 , 6 , 8 } a + b + c + d : 3

Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1 → 9).

 +) Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.

Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.

Vậy xác suất cần tính là P =  972 9 4 = 4 27 .

14 tháng 7 2017

Đáp án D

Ta thu được số chẵn khi chữ số hàng đơn vị là chắn. Do vai trò của 7 số trong đó có 3 số chẵn là như nhau nên xác suất cần tính bằng

14 tháng 11 2018

NV
25 tháng 12 2022

Không gian mẫu: \(A_7^3-A_6^2=180\) số

Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn

- 3 chữ số đều lẻ: \(A_3^3=3\) số

- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách

+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số

+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số

\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số

Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)

24 tháng 3 2017

Đáp án C

Gọi số có 4 chữ số có dạng (a, b, c, d là các chữ số, ).

Số phần tử của không gian mẫu

Gọi A là biến cố “Chọn được số lớn hơn 2500”.

  • Trường hợp 1:

Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.

Chọn b: khác a → có 9 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 2:

Chọn a: → có 1 cách chọn.

Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 3:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 4:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: → có 1 cách chọn.

Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Vậy trường hợp này có số.

Như vậy